Biopolym. Cell. 1989; 5(5):64-70.
Структура та функції біополімерів
Деякі особливості реакції полінуклеотидів з тіофосфамідом
1Пацковський Ю. В., 1Волощук Т. П., 1Потопальський А. І.
  1. Інститут молекулярної біології і генетики АН УСРС
    Київ, СРСР

Abstract

Вивчено напрямки алкілування нуклеїнових кислот протипухлинним агентом тіофосфамідом, а також етиленіміном і моноазиридиндиетилфосфатом. Показано, що ступінь алкілування гомополірибонуклеотидів визначається природою гетероциклічних основ у їхньому складі, що свідчить про переважне алкілування залишків азотистих основ. Методом обернено-фазової високоефективної рідинної хроматографії виділено продукти алкілування і показано, що алкілування рибонуклеозидів у вільному стані та у складі полінуклеотидів похідними етиленіміну відбувається в основному за N7 положенням гуанозину, Nl – аденозину і N3 – піримідинових нуклеозидів. Зменшення значень рН та іонної сили середовища призводить до збільшення швидкості алкілування ДНК.

References

[1] Giller SA, Lidak MYu, Lukevits EYa. Chemical of anticancer agents. ChemotheraPy of malignant tumors. Moscow, Medicine, 1977; 10-60.
[2] Shved AD, Solomko AP, PotoPal’skiy AI, Ivasivka SV, Grishchenko AM, Aleksandrov YuN, Tkachuk ZYu, Tsegel’skiy AA, Krylova EL, Tkachuk LV, Semernikova LI. Structural and functional features of modified nucleic acids. Molekularnaya biologiya. 1980; Is. 26:64-78.
[3] Ross WCJ. Biological alkylating agents. London, Butterworth, 1962; 232 P.
[4] Serebrianyi AM, Andrievskii GV, Bekker AR, Sibel'dina LA, Sharova OL. The structure of products of modification of nucleotides and DNA by ethyleneimine and thio-TEPA. Bioorg Khim. 1987;13(6):786-92.
[5] Sukhodub LF, Shekovskii VS, Kosevich MV, Piatigorskaia TL, Zhilkova OIu. Mass spectrometric study of thiophosphamide interaction with nucleic acid bases. Dokl Akad Nauk SSSR. 1985;283(3):714-6.
[6] Piatigorskaia GL, Zhilkova OIu, Murav'eva LM, Sukhodub LF. DNA interaction with the antitumor agent thiophosphamide. Mol Biol (Mosk). 1986;20(2):423-9.
[7] Soloviyan VT, PotoPal'skiy AI, Tkachuk ZYu. Degree of alkylation and Physico-chemical properties of the modified by tiophosphamide DNA. Molekularnaya biologiya. 1984; Is. 37:44-50.
[8] Lidak MYu, Giller SA, Medne AYa. The synthesis of Thiotepha. Thiotepha. Riga, Akad nauk LatvSSR Press, 1961; 5-8.
[9] Grechkin IP. Organophosphorus derivatives of ethyleneimine. 1. Interaction of ethyleneimine with dialkylPhosPhoric acid chloranhydrides. Izv akad nauk SSSR. 1956; (5):538-543.
[10] Shabarova ZA, Bogdanov AA. Chemistry of nucleic acids and their components. Moscow, Khimiya, 1978; 584 P.
[11] Singer B. UV spectral characteristics and acidic dissociation constants of 280 alkyl bases, nucleosides, and nucleotides. Handbook of biochem. and mol. biol. London: CRC Press, 1986. Vol. 1:409-447.
[12] Singer B. The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog Nucleic Acid Res Mol Biol. 1975;15(0):219-84.
[13] Hemminki K, Ludlum DB. Covalent modification of DNA by antineoplastic agents. J Natl Cancer Inst. 1984;73(5):1021-8.
[14] Pyatigorskaya TL, Zhilkova OYu, Arkhangelova NM, et al. Study of thiophosphamide stability in aqueous and aqueous salt solutions. Khim-farm zh. 1984; (2):343-349.
[15] Kochetkov NK, Budovskiy EI, Sverdlov ED, Simukova NA, Turchinskiy MF, Shibayev VN. Organic chemistry of nucleic acids. Moscow, Khimiya, 1970; 720 P.
[16] Price CC, Gaucher GM, Koneru P, Shibakawa R, Sowa JR, Yamaguchi M. Relative reactivities for monofunctional nitrogen mustard alkylation of nucleic acid components. Biochim Biophys Acta. 1968;166(2):327-59.