Biopolym. Cell. 2008; 24(2):142-157.
Молекулярна біофізика
Конформаційні можливості уридину: квантово-механічне дослідження методом функціоналу густини
1Жураківський Р. О., 2Говорун Д. М.
  1. Київський національний університет імені Тараса Шевченка
    вул. Володимирська 64, Київ, Україна, 01601
  2. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Квантово-механічним методом функціоналу густини на рівні теорії MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) проведено вичерпний конформаційний аналіз уридину. Представлено основні геометричні, енергетичні та полярні характеристики усіх його 111 стійких конформерів. Отримано конформаційні рівноваги у діапазоні температур 298,15–420 К: при 298,15 К syn:anti = 10,6:89,4 %, S:N = 85,5:14,5 %; при Т = 420 К syn:anti = 16,6:83,4 %, S:N = 68,6:31,4 %. Методом квантово-механічного аналізу топології електронної густини (теорія атомів у молекулах Бейдера) в усіх можливих конформерах зафіксовано 17 типів внутрішньомолекулярних водневих зв’язків, від одного до п’яти на конформер (їхня загальна кількість – 313): C1'H...O2, C2'H2...O5', C2'H2...O2, C3'H...O2, C5'H1...O2, C5'H2...O2, C6H...O4', C6H...O5', C3'H…HC6, C5'H1…HC6, C5'H2…HC6, O2'H...O2, O2'H...O3', O3'H...O2', O3'H...O5', O5'H...O2 та O5'H...O3'. Представлено їхні конформаційні властивості, геометричні та електронно-топологічні характеристики.
Keywords: уридин, конформаційний аналіз, квантово-механічний метод функціоналу густини, внутрішньомолекулярні водневі зв’язки, аналіз топології електронної густини

References

[1] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[2] Mickelson A. Chemistry of nucleosides and nucleotides. New York: Wiley, 1966. 668.
[3] Zhurakivs'kyi RO, Yurenko EP, Hovorun DM. Conformational properties of 1',2'-deoxyribose - the model sugar residue of 2'-deoxyribonucleosides: results of a nonempiric quantum mechanical study. Dopovidi Nats Akad Nauk Ukrainy. 2006; (8):207-13.
[4] Zhurakivsky R.O., Hovorun D.M. Comprehensive conformational analyses of 2'-deoxythymidine by quantum-chemical density functional method. Ukr. Bioorg. Acta. 2006. 4, 2:56–63.
[5] Zhurakivsky RO, Hovorun DM. Exhaustive conformational analysis of canonical nucleoside 2'-deoxycytidine quantum mechanical density functional method. Physics of Alive. 2006; 14(3):35–48.
[6] Zhurakivsky R. O., Hovorun D. M. Complete conformational analysis of deoxyadenosine by density functional theory. Biopolym. Cell. 2007; 23(1):45-53
[7] Zhurakivsky RO, Hovorun DM. Complete conformational analysis of 2'-deoxycytidine molecule by density functional theory. Dopovidi Nats Akad Nauk Ukrainy. 2007; (4):187-95.
[8] Zhurakivsky R. O., Hovorun D. M. Comprehensive conformational analysis of 2'-deoxyuridine by quantum-chemical density functional method. Biopolym. Cell. 2006; 22(5):384-389
[9] Bader R. atoms in molecules. Quantum theory. New York: Wiley, 2001. 532 p.
[10] Parr R. G., Yang W. Density functional theory of atoms and molecules. New York: Oxford Univ. press, 1989.
[11] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37(2):785-789.
[12] Becke A. D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 1996; 104(3):1040.
[13] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery Jr., J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian, H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision C.02. Wallingford CT: Gaussian Inc., 2004.
[14] Seeman N. C., Rosenberg J. M., Suddath F. L., Parc Kim J. J., Rich A. A simplified alphabetical nomenclature for dihedral angles in the polynucleotide backbone. J. Mol. Biol. 1976. 104:142–143.
[15] Kitamura K, Wakahara A, Mizuno H, Baba Y, Tomita K. Conformationally 'concerted' changes in nucleotide structures. A new description using circular correlation and regression analyses. J Am Chem Soc. 1981; 103(13):3899–904.
[16] Preobrazhenskaya N N, Shabarova Z A. The Steric Structure of Nucleosides, Nucleotides, and Their Derivatives, Russ Chem Rev, 1969, 38 (2), 111–125.
[17] Krasnokutskiy SA monomer molecular structure of nucleic acid fragments isolated in low temperature inert matrices: Author. Thesis. ... Candidate. Sci. Science. Kharkiv. University. VN Karazina. Kharkov, 2004. 19 p
[18] Matta CF, Bader RF. An atoms-in-molecules study of the genetically-encoded amino acids: I. Effects of conformation and of tautomerization on geometric, atomic, and bond properties. Proteins. 2000;40(2):310-29.
[19] Pinchuk VM, Tsybulyov PN, Parkhomenko VD. Quantum Chemistry intermolecular and ion-molecule interactions solvation and adsorption. Kiev. Naukova Dumka, 1994. 392 p.
[20] Grabowski SJ. Ab initio calculations on conventional and unconventional hydrogen bonds – study of the hydrogen bond strength. J. Phys. Chem. A. 2001. 105(47):10739–46.
[21] Zefirov Yu V, Zorkii P M. Van der Waals radii and their application in chemistry. Russ Chem Rev. 1989; 58(5):421–440.
[22] Zhurakivsky R.O., Hovorun D.M. Intramolecular hydrogen bonds in 2'-deoxyuridine conformers: results of non-empirical quantum chemical analysis of electron density topology. Ukr. Bioorg. Acta. 2006. 4, 1:34–41.
[23] Zhurakivsky RO, Hovorun DM. Intramolecular hydrogen bonds in all possible conformers of 2'-deoxythymidine: the nonempirical quantum-chemical analysis of the electron density. Dopovidi Nats Akad Nauk Ukrainy. 2007; (3):196–203.
[24] Zhurakivs'ky?i RO, Hovorun DM. Intramolecular hygrogen bonds in conformers of 2'-deoxycytidine: results of quantum-chemical analysis of electron density topology. Ukr Biokhim Zh. 2006;78(6):70-7.
[25] Zhurakivsky R. O., Hovorun D. M. Which intramolecular hygrogen bonds stabilize conformers of deoxyadenosine? The results of quantum-chemical analysis of electron density topology. Biopolym Cell. 2007; 23(4):363-7
[26] Zhurakivsky RO, Hovorun DM. Intramolecular hydrogen bonds stabilizing the conformers deoxyguanosine: the results of a quantum-mechanical analysis of the electron density. Dopovidi Nats Akad Nauk Ukrainy. 2007; (5):180-4.
[27] Shishkin OV, Palamarchuk GV, Gorb L, Leszczynski J. Intramolecular hydrogen bonds in canonical 2'-deoxyribonucleotides: an atoms in molecules study. J Phys Chem B. 2006;110(9):4413-22.
[28] Hovorun DM, Kondratyuk IV. Gas-phase acid-alkaline properties of canonical nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1998; (1):207-12.