Biopolym. Cell. 1992; 8(1):62-72.
Structure and Function of Biopolymers
Investigation of the glycine molecular structure by the matrix IR-spectroscopy
1Radchenko E. D., 1Reva I. D., 1Plokhotnichenko A. M., 1Stepanian S. G., 1Sheina G. G., 1Blagoi Yu. P.
  1. B. I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine
    47, Prospekt Lenina, Kharkiv, Ukraine, 61103

Abstract

Matrix IR-spectra of glycine and model compounds have been measured. The empirical analysis of the spectra has shown that the glycine molecule transition form zwitterion into uncharged from during the matrix sample preparation take place. Several conformation excited at evaporation temperature appears to present in the cryomatrices. Splitting of the conformationally sensitive bands indicates that matrix contains at least three different conformers. Preliminary conformer assignments have been carried out.

References

[1] Imamura A, Fujita H, Nagata C. The Electronic Structures of Glycine in the Isolated State and in Water. Bull Chem Soc Jpn. 1969;42(11):3118–23.
[2] Junk G, Svec H. The mass spectra of the ?-amino acids. J Am Chem Soc. 1963; 85(7):839-45.
[3] Brown RD, Godfrey PD, Storey JWV, Bassez M-P. Microwave spectrum and conformation of glycine. J Chem Soc. 1978;(13):547-8.
[4] Suenram RD, Lovas FJ. Millimeter wave spectrum of glycine. J Mol Spectrosc. 1978;72(3):372–82.
[5] Sellers HL, Schafer L. Investigations concerning the apparent contradiction between the microwave structure and the ab initio calculations of glycine. J Am Chem Soc. 1978;100(24):7728–9.
[6] Schaefer L, Sellers HL, Lovas FJ, Suenram RD. Theory versus experiment: the case of glycine. J Am Chem Soc. 1980;102(21):6566–8.
[7] Grenie Y. Infrared Spectrum of Matrix-Isolated Glycine. J Chem Phys. 1970;53(7):2980-2.
[8] Cradock S, Hinchcliffe AJ. Matrix Isolation: A technique for the study of reactive inorganic species, Cambridge University Press, Cambridge, 1975; 154 p.
[9] Radchenko ED, Sheina GG, Smorygo NA, Blagoi YP. Experimental and theoretical studies of molecular structure features of cytosine. J Mol Struct. 1984;116(3-4):387–96.
[10] Jakubke HD, Jeschkeit H. Aminosauren-Peptide-Proteine. Eine Einfuhrung 2., verb. Aufl. - Berlin: Akademie-Verlag, 1973. 346 p.
[11] Verkin BYa, Yanson IK, Sukhodub LF, Teplitskiy AB. The interaction of biomolecules. New experimental approaches and methods. Kiev, Naukova Dumka, 1985; 164 p.
[12] Gray AP, Lord RC. Rotation-Vibration Spectra of Methyl Amine and Its Deuterium Derivatives. J Chem Phys. 1957;26(3):690-705.
[13] Durig JR. Bush SF, Baglin FG. Infrared and Raman Investigation of Condensed Phases of Methylamine and Its Deuterium Derivatives. J Chem Phys. 1968;49(5):2106.
[14] Purnell CJ, Barnes AJ, Suzuki S, Ball DF, Orville-Thomas WJ. Infrared and Raman matrix isolation studies of methylamine. Chem Phy. 1976;12(1):77–87.
[15] Sheina GG, Radchenko ED, Ivanov AO Stepanian, SG, Blagoi Yu.P. Vibrational spectra of leucine. Zh fiz khim. 1988; 62(4):985—990.
[16] Gribov LA, Dement'yev VA. Methods and algorithms for computing in the theory of vibrational spectra of polyatomic molecules. M.: Nauka, 1981. 308 p.