Biopolym. Cell. 1991; 7(5):28-32.
Structure and Function of Biopolymers
Both elongation factors EF-Tu and EF-G can affect a capacity of Escherichia coli 70S ribosomes to translate poly(dT)
1Soldatkin K. A., 1Potapov A. P.
  1. Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR

Abstract

To elucidate the question whether the elongation factors influence the specificity of the ribosorae to a template sugar structure, the effect of EF-Tu and/or EF-G on the ability of Escherichia coli 70S ribosomes to translate poly(U) or poly(dT) was investigated. Both elongation factors appeared to suppress poly(dT) translation observed in their absence under certain magnesium ion concentrations. Antibiotic neomycin promoted effectively poly(dT) translation in the presence not only of both factors but of EF-Tu alone (in contrast to EF-G) as well. The results presented suggest that tRNA interaction with the ribosomal A site is mainly responsible for the specificity of the 70S ribosomes to a template sugar structure as well as ribosomal specificity to neomycin action.

References

[1] Potapov AP. A stereospecific mechanism for the aminoacyl-tRNA selection at the ribosome. FEBS Lett. 1982;146(1):5-8.
[2] Potapov AP. Stereospecific mechanism of the aminoacyl-tRNA selection by ribosome. Doklady Akad Nauk Ukr SSR. Ser B. 1982; (5):100-2.
[3] Potapov AP. Mechanism for peptidyl-tRNA and mRNA translocation in ribosome. Doklady Akad Nauk Ukr SSR. Ser B; 1982; (6):73-5.
[4] Potapov AP. Mechanism of the stereospecific stabilization of codon-anticodon complexes in ribosomes during translation. Zh Obshch Biol. 1985;46(1):63-77.
[5] Potapov AP, Soldatkin KA, Soldatkin AP, El'skaya AV. Comparative study of poly(U) and poly(dT) template activity in cell-free protein synthesizing systems from Escherichia coli and wheat germ. Biopolym Cell. 1988; 4(3):133-138.
[6] Soldatkin KA, Potapov AP, Elskaya AV. Factor-free poly (dT)-dependent synthesis of oligophenylalanine on Escherichia coli 70S ribosomes. Biopolym Cell. 1987; 3(3):160-163.
[7] Potapov AP, Soldatkin KA, Soldatkin AP, El'skaya AV. The role of a template sugar-phosphate backbone in the ribosomal decoding mechanism. Comparative study of poly(U) and poly(dT) template activity. J Mol Biol. 1988;203(4):885-93.
[8] Zubay G. The isolation and fractionation of soluble ribonucleic acid. J Mol Biol. 1962;4(5):347–56.
[9] Gillam IC, Tener GM. The use of BD-cellulose in separating transfer RNA's. Methods Enzymol. 1971; 20:55-70.
[10] de Groot N, Hamburger AD, Lapidot Y. Peptidyl-tRNA. XI. The chemical synthesis of phenylalanine-containing oligopeptidyl-tRNA. Biochim Biophys Acta. 1970;213(1):115-23.
[11] Nirenberg M, Leder P. RNA codewords and protein synthesis. the effect of trinucleotides upon the binding of sRNA to ribosomes. Science. 1964;145(3639):1399-407.
[12] Gavrilova LP, Kostiashkina OE, Koteliansky VE, Rutkevitch NM, Spirin AS. Factor-free ("non-enzymic") and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J Mol Biol. 1976;101(4):537-52.
[13] Tapio S, Kurland CG. Mutant EF-Tu increases missense error in vitro. Mol Gen Genet. 1986;205(1):186-8.
[14] Tapio S, Isaksson LA. Antagonistic effects of mutant elongation factor Tu and ribosomal protein S12 on control of translational accuracy, suppression and cellular growth. Biochimie. 1988;70(2):273-81.
[15] Gavrilova LP, Perminova IN, Spirin AS. Elongation factor Tu can reduce translation errors in poly(U)-directed cell-free systems. J Mol Biol. 1981;149(1):69-78.
[16] Potapov AP, Groisman IS, El'skaya AV. Correlation between poly(U) misreading and poly(dT) translation efficiency in E coli cell-free systems. Biochimie. 1990;72(5):345-9.
[17] Hornig H, Woolley P, Lührmann R. Decoding at the ribosomal A site: antibiotics, misreading and energy of aminoacyl-tRNA binding. Biochimie. 1987;69(8):803-13.