Biopolym. Cell. 1987; 3(4):192-201.
Structure and Function of Biopolymers
The structure of histone octamer in the composition of reconstituted polynucleosomes in presence of H1 histone and divalent cations
1Sivolob A. V., 1Khrapunov S. N.
  1. Taras Shevchenko State University of Kiev
    Kiev, USSR

Abstract

The influence of H1 histone and divalent cations upon the structure of (H2A-H2B-H3-H4)2 histone octamer in the complex with high-molecular weight DNA has been studied by fluorescence spectroscopy. Changes in the position of tyrosine histone fluorescence spectrum indicate the existence of three structural states of octamer in the nucleosorne without HI histone: «expanded» octamer (I) within 30–600 mM NaCl; «compact» octamer (II) within 3–20 mM NaCl; «unfolded» octamer (III) within less than 1 mM NaCl. Cation agents of different nature (Na+, Ca2+, Mg2+ ions, H1 histone), acting either independently or in combination exert a similar effect upon structural rearrangements of nucleosorne. The obtained results permit concluding that histone octamer structure in 2 M NaCl is similar to that in disordered nucleosome fiber, but it considerably differs from the octamer state within the compact chromatin.

References

[1] Mirzabekov AD. Nucleosomes structure and its dynamic transitions. Q Rev Biophys. 1980;13(2):255-95.
[2] Thoma F, Koller T. Unravelled nucleosomes, nucleosome beads and higher order structures of chromatin: influence of non-histone components and histone H1. J Mol Biol. 1981;149(4):709-33.
[3] Karpov VL, Bavykin SG, Preobrazhenskaya OV, Belyavsky AV, Mirzabekov AD. Alignment of nucleosomes along DNA and organization of spacer DNA in Drosophila chromatin. Nucleic Acids Res. 1982;10(14):4321-37.
[4] Marion C, Roux B, Coulet PR. Role of histones H1 and H3 in the maintenance of chromatin in a compact conformation. Study with an immobilized enzyme. FEBS Lett. 1983;157(2):317-21.
[5] Kiryanov GI, Smirnova TA, Polyakov VYu. Nucleomeric organization of chromatin. Eur J Biochem. 1982;124(2):331-8.
[6] Thomas JO, Kornberg RD. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A. 1975;72(7):2626-30.
[7] Nikolaev LG, Glotov BO, Dashkevich VK, Barbashov SF, Severin ES. Localization of histone H1 in chromatin. Cross-linking of central globular regions of H1 molecules with a bifunctional reagent. Mol Biol (Mosk). 1983;17(6):1255-61.
[8] Losa R, Thoma F, Koller T. Involvement of the globular domain of histone H1 in the higher order structures of chromatin. J Mol Biol. 1984;175(4):529-51.
[9] Allan J, Hartman PG, Crane-Robinson C, Aviles FX. The structure of histone H1 and its location in chromatin. Nature. 1980;288(5792):675-9.
[10] Zayetz VW, Bavykin SG, Karpov VL, Mirzabekov AD. Stability of the primary organization of nucleosome core particles upon some conformational transitions. Nucleic Acids Res. 1981;9(5):1053-68.
[11] Dragan AI, Khrapunov SN. The red shift of tyrosine fluorescence spectrum in polyethylenglycol and urea solutions. Stud biophys. 1983; 96(2):127-32.
[12] Dragan AI, Khrapunov SN, Protas AF, Berdyshev GD. The change in maximum position of tyrosyl fluorescence spectra of RNAse A and histone H2A-H2B under denaturation. Stud biophys. 1983; 96(3):187-93.
[13] Dragan AI, Khrapunov SN, Berdyshev GD. Analysis of the dynamic equilibrium of histone oligomers in a solution. The nature of forces stabilizing the (H2A-H2B-H3-H4)2 octamer structure. Mol Biol (Mosk). 1985;19(5):1259-68.
[14] Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. Spatial organization of the histone dimer H2A-H2B in solutions of different ionic strengths. Mol Biol (Mosk). 1983;17(5):992-1000.
[15] Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. The structure of the histone dimer H2A-H2B studied by spectroscopy. Biochim Biophys Acta. 1984;787(1):97-104.
[16] Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. Structure of the histone tetramer (H3-H4)2: 2. Position of λmax in the tyrosyl fluorescence spectra and tyrosyl accessibility to quenchers. Int J Biol Macromol. 1984; 6(1):31-34.
[17] Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. Spatial organization of the (H3-H4-H2A-H2B)2 histone octamer. Mol Biol (Mosk). 1985;19(4):1011-20.
[18] Khrapunov SN, Sivolob AV, Dragan AI, Berdyshev GD. Structure of histone octamers in reconstituted polynucleosomes. Mol Biol (Mosk). 1985;19(6):1553-61.
[19] Tatchell K, Van Holde KE. Reconstitution of chromatin core particles. Biochemistry. 1977;16(24):5295-303.
[20] Watanabe F. Condensation of polynucleosome by histone H1 binding. FEBS Lett. 1984;170(1):19-22.
[21] Johns EW. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochem J. 1964;92(1):55-9.
[22] Lehrer SS, Leavis PC. Solute quenching of protein fluorescence. Methods Enzymol. 1978;49:222-36.
[23] Isenberg I. Histones. Annu Rev Biochem. 1979;48:159-91.
[24] Khrapunov SN, Protas AF, Sivolob AV, Dragan AI, Berdyshev GD. Characteristics of the tertiary structure of histone H1 from the calf thymus. Mol Biol (Mosk). 1984;18(4):979-87.
[25] Khrapunov SN, Sivolob AV, Kucherenko NE. Fluorescence study of the interaction of calf thymus histone H1 with DNA. Int J Biol Macromol. 1984; 6(4):199-202.
[26] Libertini LJ, Small EW. Effects of pH on low-salt transition of chromatin core particles. Biochemistry. 1982;21(14):3327-34.
[27] Dieterich AE, Axel R, Cantor CR. Salt-induced structural changes of nucleosome core particles. J Mol Biol. 1979;129(4):587-602.
[28] Wu HM, Dattagupta N, Hogan M, Crothers DM. Structural changes of nucleosomes in low-salt concentrations. Biochemistry. 1979;18(18):3960-5.
[29] Fulmer AW, Fasman GD. Ionic strength-dependent conformational transitions of chromatin. Circular dichroism and thermal denaturation studies. Biopolymers. 1979;18(11):2875-91.
[30] Uberbacher EC, Ramakrishnan V, Olins DE, Bunick GJ. Neutron scattering studies of nucleosome structure at low ionic strength. Biochemistry. 1983;22(21):4916-23.
[31] Burch JB, Martinson HG. The roles of H1, the histone core and DNA length in the unfolding of nucleosomes at low ionic strength. Nucleic Acids Res. 1980;8(21):4969-87.
[32] Olins DE, Bryan PN, Harrington RE, Hill WE, Olins AL. Conformational states of chromatin nu bodies induced by urea. Nucleic Acids Res. 1977;4(6):1911-31.
[33] Bradbury EM, Danby SE, Rattle HW, Giancotti V. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. Histone H1 in chromatin and in H1 - DNA complexes. Eur J Biochem. 1975;57(1):97-105.
[34] Fabiato A, Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris). 1979;75(5):463-505.
[35] Hagerman PJ. Investigation of the flexibility of DNA using transient electric birefringence. Biopolymers. 1981;20(7):1503-35.
[36] Thoma F, Losa R, Koller T. Involvement of the domains of histones H1 and H5 in the structural organization of soluble chromatin. J Mol Biol. 1983;167(3):619-40.
[37] Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11-17;311(5986):532-7.
[38] Hatch CL, Bonner WM, Moudrianakis EN. Differential accessibility of the amino and carboxy termini of histone H2A in the nucleosome and its histone subunits. Biochemistry. 1983;22(12):3016-23.