Biopolym. Cell. 2009; 25(4):253-265.
Reviews
Molecularly imprinted polymers as synthetic mimics of bioreceptors. 1. General principles of molecular imprinting
1Sergeyeva T. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The review is devoted to analysis of the publications in the area of synthesis of artificial mimics of biological receptors using the method of molecular imprinting. General principles of molecular imprinting as well as main types of polymers being used in molecular imprinting are described. The special attention is paid to the polymers-biomimics synthesized using the method of non-covalent molecular imprinting.
Keywords: molecular imprinting, molecularly imprinted polymer, polymers-biomimics

References

[1] Wulff G. Angew. Chem. Int. Ed. Engl 1995 34:1812–1832.
[2] Sellergren B. Molecular imprinting by noncovalent interactions. Enantioselectivity and binding capacity of polymers prepared under conditions favoring the formation of template complexes Makromol. Chem 1989 190:2703–2711.
[3] Sellergren B. Molecular imprinting by noncovalent interactions: tailor-made chiral stationary phases of high selectivity and sample load capacity Chirality 1989 1:63–68.
[4] Sellergren B., Lepisto M., Mosbach K. Highly Enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition J. Amer. Chem. Soc 1988 110, N 17:5853–5860.
[5] Svenson J., Nicholls I. A. On the thermal and chemical stability of molecularly imprinted polymers Anal. Chim. Acta 2001 435, N 1:19–24.
[6] Wulff G., Sarhan A. Uber die anwendung von enzymanalog gebauten polymeren zur racemattrennung Angew. Chem 1972 84, N 8:364.
[7] Wulff G., Sarhan A., Gimpel J., Lohmar E. Uber enzymanalog gebaute polymere, III) Zur synthese von polymerisierbaren D-Glycerinslurenderivaten Chem. Ber 1974 107:3364–3376.
[8] Wulff G., Sarhan A., Zabrocki K. Enzyme-analogue built polymers and their use for the resolution of racemates Tetrahed. Lett 1973 44:4329–4332.
[9] Wulff G., Schulze I. 9. Enzyme-analogue built polymers. IX. Polymers with mercapto groups of definite cooperativity Isr. J. Chem 1978 17:291–297.
[10] Wulff G., Schulze I. Gezielte kooperativitlt sowie vereinzelung von mercaptogruppen in syntetischen polymeren Angew. Chem 1978 90:568–570.
[11] Wulff G., Schulze I., Zabrocki K., Vesper W. Uber enzymanalog gebaute polymere, 11) Bindungsstellen im polymer mit unterschiedlicher zahl der haftgruppen Makromol. Chem 1980 181:531–544.
[12] Wulff G., Vesper R., Grobe-Einsler R., Sarhan A. Enzymeanalogue built polymers, 4) On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates Makromol. Chem 1977 178:2799–2816.
[13] Wulff G., Vesper W. Preparation of chromatographic sorbents with chiral cavities for racemic resolution J. Chromatogr 1978 167:171–186.
[14] Andersson L., Ekberg B., Mosbach K. Synthesis of a new amino acid based cross-linker for preparation of substrate selective acrylic polymers Tetrahed. Lett 1985 26, N 30:3623–3624.
[15] Andersson L., Sellergren B., Mosbach K. Imprinting of amino acid derivatives in macroporous polymers Tetrahed. Lett 1984 25, N 45:5211–5214.
[16] Arshady R., Mosbach K. Synthesis of substrate-selective polymers by host-guest polymerization Makromol. Chem 1981 182:687–692.
[17] Norrlow O., Glad M., Mosbach K. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates J. Chromatogr 1984 299:29–41.
[18] Sellergren B., Ekberg B., Mosbach K. Molecular imprinting of amino acid derivatives in macroporous polymers J. Chromatogr 1985 347:1–10.
[19] Ansell R. J., Ramstrom O., Mosbach K. Artificial antibodies prepared by molecular imprinting. Clin. Chem. 1996; 42(9):1506–1512.
[20] Muldoon M. T., Stanker L. H. Plastic antibodies: Molecularly imprinted polymers. Chem. Ind. 1996; 18:204–207.
[21] Klein J. U., Whitcombe M. J., Mulholland F., Vulfson E. N. Template-mediated synthesis of a polymeric receptor specific to amino acid sequences Angew. Chem. Int. Ed. Engl 1999 38:2057–2060.
[22] Bereczki A., Tolokan A., Horvai G., Horvath V., Lanza F., Hall A. J., Sellergren B. Determination of phenytoin in plasma by molecularly imprinted solid-phase extraction J. Chromatogr. A 2001 930, N 1–2:31–38.
[23] Quaglia M., Chenon K., Hall A. J., De Lorenzi E., Sellergren B. Target analogue imprinted polymers with affinity for folic acid and related compounds J. Amer. Chem. Soc 2001 123, N 10:2146–2154.
[24] Blomgren A., Berggren C., Holmberg A., Larsson F., Sellergren B., Ensing K. Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection J. Chromatogr. A 2002 975:157–164.
[25] Vlatakis G., Andersson L. I., Muller R., Mosbach K. Drug assay using antibody mimics made by molecular imprinting Nature 1993 361:645–647.
[26] Andersson L. I., Muller R., Vlatakis G., Mosbach K. Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine Proc. Natl Acad. Sci. USA 1995 92:4788–4792.
[27] Kriz D., Mosbach K. Competitive amperometric morphine sensensor based on an agarose immobilized molecularly imprinted polymer Anal. Chim. Acta 1994 300, N 1–3:71–75.
[28] Piletska E. V., Romero-Guerra M., Chianella I., Karim K., Turner A. P. F., Piletsky S. A. Towards the development of multisensor for drugs of abuse based on molecular imprinted polymers Anal. Chim. Acta 2005 542:111–117.
[29] Tamayo F. G., Martin-Esteban A. Selective high performance liquid chromatography imprinted-stationary phases for the screening of phenylurea herbicides in vegetable samples J. Chromatogr. A 2005 1098:116–122.
[30] Tamayo F. G., Casillas J. L., Martin-Esteban A. Evaluation of new selective molecularly imprinted polymers prepared by precipitation polymerisation for the extraction of phenylurea herbicides J. Chromatogr. A 2005 1069:173–181.
[31] Tamayo F. G., Titirici M. M., Martin-Esteban A., Sellergren B. Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography Anal. Chim. Acta 2005 542:38–46.
[32] Sergeyeva T. A., Brovko O. O., Piletska E. V., Piletsky S. A., Goncharova L. A., Karabanova L. V., Sergeyeva L. M., El'skaya A. V. Porous molecularly imprinted polymer membranes and polymeric particles Anal. Chim. Acta 2007 582, N 2:311–319.
[33] Sergeyeva T. A., Piletsky S. A., Brovko A. A., Slinchenko E. A., Sergeeva L. M., Panasyuk T. L., Elskaya A. V. Conductometric sensor for atrazine detection based on molecularly imprinted polymer membranes Analyst 1999 124, N 3:331–334.
[34] Sergeyeva T. A., Piletsky S. A., Brovko A. A., Slinchenko E. A., Sergeeva L. M., Elskaya A. V. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection Anal. Chim. Acta 1999 392, N 2–3:105–111.
[35] Sergeyeva T. A., Matuschewski H., Piletsky S. A., Bendig J., Schedler U., Ulbricht M. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization J. Chromatogr. A 2001 907, N 1–2:89–99.
[36] Sergeyeva T. A., Piletsky S. A., Piletska E. V., Brovko O. O., Karabanova L. V., Sergeeva L. M., El'skaya A. V., Turner A. P. F. In situ formation of porous molecularly imprinted polymer membranes Macromolecules 2003 36:7352– 7357.
[37] Weiss R., Freudenschuss M., Krska R., Mizaikoff B. Improving methods of analysis for mycotoxins: molecularly imprinted polymers for deoxynivalenol and zearalenone Food Addit. Contam 2003 20:386–395.
[38] Chianella I., Lotierzo M., Piletsky S. A., Tothill I. E., Chen B., Karim K., Turner A. P. F. Rational design of a polymer specific for microcystin-LR using a computational approach Anal. Chem 2002 74, N 6:1288–1293.
[39] Sergeyeva T. A., Piletska O. V., Goncharova L. A., Brovko O. O., Piletsky S. A., El'ska G. V. Sensor system based on molecularly-imprinted polymer membranes for selective recognition of aflatoxin B1. Ukr. Biokhim. Zh. 2008; 80(3):84–93.
[40] Sergeyeva T. A., Piletska O. V., Brovko O. O., Goncharova L. A., Piletsky S. A., El'ska G. V. Aflatoxin-selective molecularly-imprinted polymer membranes based on acrylatepolyurethane semi-interpenetrating polymer networks. Ukr. Biokhim. Zh. 2007; 79(5):109–115.
[41] Pogorelova S. P., Zayats M., Bourenko T., Kharitonov A. B., Lioubashevski O., Katz E., Willner I. Analysis of HAD(P)(+)/ NAD(P)H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-quartz crystals Anal. Chem 2003 75:509–517.
[42] Raitman O. A., Chegel V. I., Kharitonov A. B., Zayats M., Katz E., Willner I. Analysis of NAD(P)(+) and NAD(P)H cofactors by means of imprinted polymers associated with Au surfaces: A surface plasmon resonance study Anal. Chim. Acta 2004 504:101–111.
[43] Andersson L. I., Miyabayashi A., O'Shannessy D. J., Mosbach K. Enantiomeric resolution of amino acid derivatives on molecularly imprinted polymers as monitored by potentiometric measurements J. Chromatogr. A 1990 516:323–331.
[44] Andersson L. Preparation of amino acid ester-selective cavities formed by non-covalent imprinting with a substrate in highly cross-linked polymers React. Polym 1988 9:29–41.
[45] Wulff G., Vietmeier J. Enzyme-analogue built polymers, 26) Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules Makromol. Chem 1989 190:1727–1735.
[46] Piletsky S. A., Dubey Ya. I., Fedoryak D. M., Kukhar V. P. Substrate-selective polymer membranes. Selective transfer of nucleic acids' components Biopolym. Cell 1990 6, N 5:55–58.
[47] Shea K. J., Spivak D. A., Sellergren B. Polymer complements to nucleotide bases. selective binding of adenine derivatives to imprinted polymers. J. Amer. Chem. Soc 1993 115:3368–3369.
[48] Spurlock L. D., Jaramillo A., Praserthdam A., Lewis J., Brajtertoth A. Selectivity and sensitivity of ultrathin purine templated overoxidized polypyrrole film electrodes Anal. Chim. Acta 1996 336:37–46.
[49] Wang L., Zhang Z. The study of oxidization fluorescence sensor with molecular imprinting polymer and its application for 6-mercaptopurine (6-MP) determination Talanta 2008 76, N 4:768–771.
[50] Kugimiya A., Takeuchi T. Molecularly imprinted polymercoated quartz crystal microbalance for detection of biological hormone Electroanalysis 1999 11, N 15:1158–1160.
[51] Gao J. G., Zhou J., Qu X. J. Characteristics of molecular recognition of plant hormone H-1-indole-3-acetic acid molecular template polymer. Chin. J. Anal. Chem. 2003; 31:1173–1177.
[52] Fujiwara, M., Nishiyama M., Yamamura I., Ohtsuki S., Nomura R. A sol-gel method using acetic anhydride in the presence of cholesterol in organic solution media: Preparation of silicas that recognize steroid hormones Anal. Chem 2004 76, N 8:2374–2381.
[53] Kublickas R., Werner C., Jariene G., Voit B., Lasas L. Polyacrylamide gels containing ionized functional groups for the molecular imprinting of human growth hormone Polym. Bull 2007 58, N 3:611–617.
[54] Kubo T., Matsumoto H., Shiraishi F., Nomachi M., Nemoto K., Hosoya K., Kaya K. Selective separation of hydroxy polychlorinated biphenyls (HO-PCBs) by the structural recognition on the molecularly imprinted polymers: Direct separation of the thyroid hormone active analogues from mixtures Anal. Chim. Acta 2007 589, N 2:180–185.
[55] Wulff G., Minarmk M. Template imprinted polymers for HPLC separation of racemates J. Liq. Chromatogr 1990 13, N 15:2987–3000.
[56] Wulff G., Schauhoff S. Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. selectivity dependence on the arrangement of functional groups versus spatial requirements J. Org. Chem 1991 56, N 1:395–400.
[57] Yan S. L., Gao Z. X., Fang Y. J., Cheng Y. Y., Zhou H. Y., Wang H. Y. Characterization and quality assessment of binding properties of malachite green molecularly imprinted polymers prepared by precipitation polymerization in acetonitrile Dyes Pigm 2007 74, N 3:572–577.
[58] Gong S. L., Yu Z. J., Meng L. Z., Hu L., He. Y. B. Dye-molecular-imprinted polysiloxanes. II. Preparation, characterization, and recognition behaviour J. Appl. Polymer Sci 2004 93, N 2:637–643.
[59] Gilliland J. W., Yokoyama K., Yip W. T. Solvent effect on mobility and photostability of organic dyes embedded inside silica sol-gel thin films Chem. Mat 2005 17:6702–6712.
[60] Dunkin I. R., Lenfeld J., Sherrington D. C. Molecular imprinting of flat polycondensed aromatic molecules in macroporous polymers Polymer 1993 34, N 1:77–84.
[61] Dickert F. L., Forth P., Lieberzeit P., Tortschanoff M. Molecular imprinting in chemical sensing – detection of aromatic and halogenated hydrocarbons as well as polar solvent vapors Fresenius J. Anal. Chem 1998 360, N 7:759–762.
[62] Lubke M., Whitcombe M. J., Vulfson E. N. A novel approach to the molecular imprinting of polychlorinated aromatic compounds J. Amer. Chem. Soc 1998 120:13342–13348.
[63] Dickert F. L., Tortschanoff M., Bulst W. E., Fischerauer G. Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water Anal. Chem 1999 71, N 20:4559–4563.
[64] Mukawa T., Goto T., Nariai H., Aoki Y., Imamura A., Takeuchi T. Novel strategy for molecular imprinting of phenolic compounds utilizing disulfide templates J. Pharm. Biomed. Anal 2003 30:1943–1947.
[65] Yu K. Y., Tsukaghoshi K., Maeda M., Takagi M. Metal ionimprinted microspheres prepared by reorganization of the coordinating groups of the surface Anal. Sci 1992 8:701–703.
[66] Tsukagoshi K., Yu. K., Maeda M., Takagi M. Adsorption behavior of metal-ions onto Co(II)-imprinted microspheres prepared by surface imprinting – Effect of Co(II)-imprinting Kobunshi Ronbunshu 1993 50, N 5:455–458.
[67] Ersoz A., Say R., Denizli A. Ni(II) ion-imprinted solid phase extraction and preconcentration in aqueous solutions by packed-bed columns Anal. Chim. Acta 2004 502:91–97.
[68] Daniel S., Rao P. P., Rao T. P. Investigation of different polymerization methods on the analytical performance of palladium(II) ion imprinted polymer material Anal. Chim. Acta 2005 536:197–206.
[69] Koide Y., Senba H., Shosenji H., Maeda M., Takagi M. Selective adsorption of metal ions to surface-template resins prepared by emulsion polymerization using 10-(p-vinylphenyl)decanoic acid Bull. Chem. Soc. Jap 1996 69, N 1:125–130.
[70] Koide Y., Tdujimoto K., Shosenji H., Maeda M. Adsorption of metal ions to surface-template resins prepared with amphiphilic styrene monomers bearing amino carboxylic acid Bull. Chem. Soc. Jap 1998 71, N 4:789–796.
[71] Koide Y., Shosenji H., Maeda M., Takagi M. Selective adsorption of metal ions to surface-templated resins prepared by emulsion polymerization using a functional surfactant ACS Symp. Ser 1998 703:264–277.
[72] Dai S., Burleigh M. C., Ju Y. H., Gao H. J., Lin J. S., Pennycook S. J., Barnes C. E., Xue Z. L. Hierarchically imprinted sorbents for the separation of metal ions J. Amer. Chem. Soc 2000 122, N 5:992–993.
[73] Asanuma H., Kajiya K., Hishiya T., Komiyama M. Molecular imprinting of cyclodextrin in water for the recognition of peptides Chem. Lett 1999 7:665–666.
[74] Rachkov A., Minoura N. Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach J. Chromatogr. A 2000 889, N 1–2:111–118.
[75] Hart B. R., Shea K. J. Synthetic peptide receptors: Molecularly imprinted polymers for the recognition of peptides using peptide-metal interactions J. Amer. Chem. Soc 2001 123, N 9:2072–2073.
[76] Hart B. R., Shea K. J. Molecular imprinting for the recognition of N-terminal histidine peptides in aqueous solution Macromolecules 2002 35, N 16:6192–6201.
[77] Andersson L. I., Muller R., Mosbach K. Molecular imprinting of the endogenous neuropeptide Leu-5-enkephalin and some derivatives thereof Macromol. Res. Communs 1996 17, N 1:65–71.
[78] Lin C. C., Wang G. R., Liu C. Y. A novel monolithic column for capillary electrochromatographic separation of oligopeptides Anal. Chim. Acta 2006 572, N 2:197–204.
[79] Braco L., Dabulis K., Klibanov A. M. Production of abiotic receptors by molecular imprinting of proteins Proc. Natl. Acad. Sci. USA 1990 87:274–277.
[80] Lin H. Y., Hsu C. Y., Thomas J. L., Wang S. E., Chen H. C., Chou T. C. The microcontact imprinting of proteins: The effect of cross-linking monomers for lysozyme, ribonuclease A and myoglobin Biosensors and Bioelectronics 2006 22, N 4:534–543.
[81] Lu S. L., Cheng G. X., Pang X. S. Study on preparation of protein-imprinted soft-wet gel composite microspheres with magnetic susceptibility and their characteristics. I. Preparation and particle morphology J. Appl. Polym. Sci 2006 100:684–694.
[82] Matsunaga T., Takeuchi T. Crystallized protein-imprinted polymer chips Chem. Lett 2006 35, N 9:1030–1031.
[83] Kimhi O., Bianco-Peled H. Study of the interactions between protein-imprinted hydrogels and their templates Langmuir 2007 23, N 11:6329–6335.
[84] Brown M. E., Puleo D. A. Protein binding to peptide-imprinted porous silica scaffolds Chem. Eng. J 2008 137, N 1:97–101.
[85] Alexander C., Vulfson E. N. Spatially-functionalized polymer surfaces produced by cell-mediated lithography Adv. Mater 1997 9:751–755.
[86] Dickert F. L., Hayden O., Halikias K. P. Synthetic receptors as sensor coatings for molecules and living cells The Analyst 2001 126, N 6:760–771.
[87] Dickert F. L., Hayden O., Lieberzeit P., Haderspoeck C., Bindeus R., Palfinger C., Wirl B. Nanoand micro-structuring of sensor materials – from molecule to cell detection Synth. Met 2003 138:65–69.
[88] Takatsy A., Kilar A., Kilar F., Hjerten S. Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses and cells (bacteria): I. Gel antibodies against proteins (transferrins) J. Sep. Sci 2006 29, N 18:2802–2809.
[89] D'Souza S. M., Alexander C., Carr S. W., Waller A. M., Whitcombe M. J., Vulfson E. N. Directed nucleation of calcite at a crystal-imprinted polymer surface Nature 1999 398, N 6725:312–316.
[90] D'Souza S. M., Alexander C., Whitcombe M. J., Waller A. M., Vulfson E. N. Control of crystal morphology via molecular imprinting Polym. Int 2001 50, N 4:429–432.
[91] Wang J. F., Zhou L. M., Liu X. L., Wang Q. H., Zhu D. Q. Effect of functional monomer on chiral separation ability of molecular imprinted chiral stationary phase. Acta Chim. Sin. 2000; 58(3):351–355.
[92] Lanza F., Hall A. J., Sellergren B., Bereczki A., Horvai G., Bayoudh S., Cormack P. A. G., Sherrington D. C. Development of a semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional monomers for phenytoin and nifedipine Anal. Chim. Acta 2001 435, N 1:91–106.
[93] Zhang L. Y., Cheng G. X., Fu C., Liu X. H. Tyrosine imprinted polymer beads with different functional monomers via seed swelling and suspension polymerization Polym. Eng. Sci 2003 43:965–974.
[94] Takeuchi T., Fukuma D., Matsui J. Combinatorial molecular imprinting: an approach to synthetic polymer receptors Anal. Chem 1999 71:285–290.
[95] Lanza F., Sellergren B. Method for synthesis and screening of large groups of molecularly imprinted polymers Anal. Chem 1999 71, N 11:2092–2096.
[96] Yilmaz E., Mosbach K., Haupt K. Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays Anal. Comm 1999 36, N 5:167–170.
[97] Subramanyam S., Piletsky S. A., Piletska E. V., Chen B., Karim K., Turner A. P. F. «Bite-and-switch» approach using computationally designed molecularly imprinted polymers for sensing of creatinine Biosensors and Bioelectronics 2001 16:631–637.
[98] Sergeyeva T. A., Panasyuk-Delaney T. L., Piletska O. V., Piletsky S. A., El'ska G. V. Development of a capacitive sensor for environmental monitoring based on thin films of molecularly-imprinted polymers. Computational modeling for optimization of the composition of synthetic mimics of bioreceptors. Ukr. Biokhim. Zh. 2006; 78(2):121–131.
[99] Sergeyeva T. A., Piletska O. V., Piletsky S. A., Sergeeva L. M., Brovko O. O., El'ska G. V. Data on the structure and recognition properties of the template-selective binding sites in semi-IPN-based molecularly imprinted polymer membranes Mater. Sci. Eng. C 2008 28:1471–1479.
[100] O'Shannessy D. J., Andersson L. I., Mosbach K. Molecular recognition in synthetic polymers. Enantiomeric resolution of amide derivatives of amino acids on molecularly imprinted polymers J. Mol. Recogn 1989 2, N 1:1–5.
[101] Andersson L. I., Mosbach K. Enantiomeric resolution on molecularly imprinted polymers prepared with only noncovalent and non-ionic interactions J. Chromatogr 1990 516:313–322.
[102] Sellergren B., Shea K. J. Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers J. Chromatogr 1993 635:31–49.
[103] Wulff G., Poll H. G., Minarik M. Enzyme-analogue built polymers. XIX. Racemic resolution on polymers containing chiral cavities J. Liq. Chromatogr 1986 9:385–405.
[104] Hart B. R., Rush D. J., Shea K. J. Discrimination between enantiomers of structurally related molecules: Separation of benzodiazepines by molecularly imprinted polymers J. Amer. Chem. Soc 2000 122, N 3:460–465.
[105] Piletsky S. A., Karim K., Piletska E. V., Day C. J., Freebairn K. W., Legge C., Turner A. P. F. Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach Analyst 2001 126, N 10:1826–1830.
[106] Machtejevas E., Sellergren B., Martynaitis V., Owens P. K., Maruska A. Screening of oxazepine indole enantiomers by means of high performance liquid chromatography with imprinted polymer stationary phase J. Sep. Sci 2004 27, N 7–8:547–551.
[107] Yang G. L., Yin J. F., Li Z. W., Liu H. Y., Cai L. P., Wang D. X., Chen Y. Chiral separation of nateglinide and its (L) enantiomer on a molecularly imprinted polymer-based stationary phase Chromatographia 2004 59:705–708.
[108] Guerreiro A. R., Korkhov V., Mijangos I., Piletska E. V., Rodins J., Turner A. P. F., Piletsky S. A. Influence of continuous magnetic field on the separation of ephedrine enantiomers by molecularly imprinted polymers Biosensors and Bioelectronics 2008 23, N 7:1189–1194.
[109] Panasyuk T. L., Mirsky V. M., Piletsky S. A., Wolfbeis O. S. Electropolymerized molecularly imprinted polymers as receptor layers in a capacitive chemical sensors Anal. Chem 1999 71:4609–4613.
[110] Piletsky S. A., Piletska E. V., Chen B., Karim K., Weston D., Barret G., Lowe P., Turner A. P. F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination Anal. Chem 2000 72:4381–4385.
[111] Malitesta C., Losito I., Zambonin P. G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors Anal. Chem 1999 71:1366–1370.
[112] Deore B., Chen Z. D., Nagaoka T. Overoxidised polypyrrole with dopant complementary cavities as a new molecularly imprinted polymer matrix Anal. Sci 1990 15, N 9:827–828.
[113] Chen Z. D., Takei Y., Deore B. A., Nagaoka T. Enantioselective uptake of amino acid with overoxidized polypyrrole colloid templated with L-lactate Analyst 2000 125, N 12:2249–2254.
[114] Glad M., Kempe M., Mosbach K. Selective affinity material, preparation thereof by molecular imprinting, and use of the same PCT. Int. Application WO9305068, 1993.
[115] Arnold F., Plunkett S., Dhal P. K., Vidyasankar S. Surface modification with molecularly-imprinted polymers for selective recognition. Polymer Preprints. 1995; 36:97–98.
[116] Prasad B. B., Banerjee S. Preparation, characterization and performance of a silica gel bonded molecularly imprinted polymer for selective recognition and enrichment of -lactam antibiotics React. and Funct. Polymers 2003 55:159–169.
[117] Sagiv J. Organized monolayers by adsorption. III. Irreversible adsorption and memory effects in skeletonized silane monolayers Isr. J. Chem 1979 18:346–353.
[118] Kim J.-L., Cotton T. M., Uphaus R. A. Molecular recognition in monolayers and species detection by surface-enhanced resonance Raman spectroscopy Thin Solid Films 1988 160:389–397.
[119] Kim J.-L., Cotton T. M., Uphaus R. A. Electrochemical and Raman characterization of molecular recognition sites in selfassembled monolayers J. Phys. Chem 1988 92:5575– 5578.
[120] Andersson L. I., Mandenius C. F., Mosbach K. Studies on guest selective molecular recognition on an octadecyl silylated silicon surface using ellipsometry Tetrahed. Lett 1988 29:5437–5440.
[121] Yamamura K., Hatakeyama H., Naka K., Tabushi I., Kurihara K. Guest selective molecular recognition by an octadecylsilyl monolayer covalently bound to an SnO2 electrode J. Chem. Soc. Chem. Commun 1988 N 2:79–81.
[122] Tabushi I., Kurihara K., Naka K., Yamamura K., Hatakeyama H. Supramolecular sensor based on SnO2 electrode modified with octadecylsilyl monolayer having molecular binding sites Tetrahed. Lett 1987 28:4299–4202.
[123] Piletsky S. A., Piletska E. V., Sergeyeva T. A., Panasyuk T. L., El'skaya A. V. Molecularly-imprinted self-assembled films with specificity to cholesterol Sensors and Actuators B 1999 60:216–220.
[124] Panasyuk-Delaney T., Mirsky V., Sergeyeva T., Wolfbeis O. Impedometric chemosensors based on thin film polymers Proc. of the 4th Int. Workshop on Applied Physics of Condensed Matter (Demanovska Dolina, Slovak Republic, September 17–19, 2001) Demanovska Dolina, 2001:109– 202.
[125] Panasyuk-Delaney T., Mirsky V. M., Wolfbeis O. S. Capacitive creatinine sensor based on a photografted molecularly imprinted polymer Electroanalysis 2002 14, N 3:221–224,
[126] Delaney T. L., Zimin D., Rahm M., Weiss D., Wolfbeis O. S., Mirsky V. M. Capacitive detection in ultrathin chemosensors prepared by molecularly imprinted grafting photopolymerization Anal. Chem 2007 79, N 8:3220–3225.
[127] Dickey F. H. Preparation of specific adsorbents Proc. Nat. Acad. Sci. USA 1949 35:227–229.
[128] Dickey F. H. Specific adsorbtion J. Phys. Chem 1955 59, N 8:695–707.
[129] Strelko V. V., Kanniblotskii V. A., Vysotskii Z. Z. Chemical adsorption of dyes on silica gels. Zhurn. Fizichesk. Khim. 1968; 42:1219–1223.
[130] Curti R., Colombo U. Separazione degli antipodi ottici dell'acido canfosolfonico mediante cromatografia su assorbenti specifici. Chim. Ind. 1951; 23(2):103.
[131] Beckett A. H., Andersson P. A method for the determination of the configuration of organic molecules using «stereoselective adsorbents» Nature 1957 179:1074–1075.
[132] Erlenmeyer H., Bartels H. Uber das problem der ahnlichkeit in der chemie. Dunnschichtchromatographie mit spezifisch adsorbierenden silikagelen I Helv. Chim. Acta 1964 47, N 46–51:1285–1288.
[133] Patrikeev V. V., Sholin A. F. Methods of preparation and properties of specially formed silica gels and their use for separation of complex organic systems. Molek. Khromatogr. 1964:66–72.
[134] Kosmaty E. S., Chebot'ko K. A., Kanniblotskii V. A., Galinskaya V. I., Lukashevich O. V., Strelko V. V. Application of a selective adsorbent for DDT determination in aqueous solutions. Zhurn. Analit. Khim. 1975; 30(5):1027–1030.
[135] Beckett A. H., Andewrson P. The determination of the relative configuration of morphine, levorphanol, and levophenazocine by stereoselective absorbents J. Pharmacy and Parmacol 1960 12:228–236.
[136] Glad M., Norrlow O., Sellergren B., Siegbahn N., Mosbach K. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica J. Chromatogr 1985 347:11–23.
[137] Norrlow O., Mansson M. O., Mosbach K. Improved chromatography: prearranged distances between boronate groups by the molecular imprinting approach J. Chromatogr 1987 396:374–377.
[138] Ratner B. D., Shi H. Q. Recognition templates for biomaterials with engineered bioreactivity Curr. Opin. Solid State and Mater. Sci 1999 4, N 4:395–402.
[139] Johansson A., Mosbach K., Mansson M.-O. Horse liver alcohol dehydrogenase can accept NADP+ as coenzyme in high concentrations of acetonitrile Eur. J. Biochem 1995 227:551–555.
[140] Rich J. O., Dordick J. S. Controlling subtilisin activity and selectivity in organic media by imprinting with nucleophilic substrates. J. Amer. Chem. Soc 1997 119:3245–3252.
[141] Stahl M., Jeppersson-Wistrand U., Mansson M.-O., Mosbach K. Induced stereoselectivity and substrate selectivity of bioimprinted -chymotrypsin in anhydrous organic media J. Amer. Chem. Soc 1991 113:9366–9368.
[142] Stahl M., Mansson M.-O., Mosbach K. The synthesis of a Damino acid ester in an organic media with -chymotrypsin modified by a bio-imprinting procedure Biotechnol. Lett 1990 12, N 3:161–166.
[143] Saraswathi S., Keyes M. H. Semisynthetic «acid-esterase»: Conformational modification of ribonuclease Enzyme and Microbial Technol 1984 6:98–100.
[144] Liu J., Zhang K., Rena X., Luob G., Shen J. Bioimprinted protein exhibits glutathione peroxidase activity Anal. Chim. Acta 2004 504:185–189.
[145] Green B. S. Catalytic antibodies and biomimetics Curr. Opin. Biotechnol 1991 2, N 3:395–400.
[146] Vaidya A., Borck A., Manns A., Fischer L. Altering glucose oxidase to oxidize D-galactose through crosslinking of imprinted protein ChemBioChem 2003 5, N 1:132–135.
[147] Dabulis K., Klibanov A. M. Molecular imprinting of proteins and other macromolecules resulting in new adsorbents Biotechnol. Bioeng 1992 39, N 2:176–185.
[148] Mosbach K., Ramstrom O. The emerging technique of molecular imprinting and its future impact of biotechnology Bio/Technology 1996 14:163–170.
[149] Mensson M.-O. Modification of enzymes and proteins with bioimprinting procedures Adv. Mol. and Cell Biol 1996 15, N 1:15–21.
[150] Teke M., Sezginturk M. K., Dinckaya E., Telefoncu A. A bioimprinted urease biosensor: Improved thermal and operational stabilities Talanta 2008 74, N 4:661–665.
[151] Dabulis K., Klibanov A. M. Dramatic enhancement of enzymatic activity in organic solvents by lyoprotectants Biotechnol. Bioeng 1993 41:566–571.
[152] Russel A. J., Klibanov A. M. Inhibitor-induced enzyme activation in organic solvents J. Biol. Chem 1988 263:11624–11626.
[153] Mingarro I., Abad C., Braco L. Interfacial activation-based molecular bioimprinting of lipolytic enzymes Proc. Natl Acad. Sci. USA 1995 92:3308–3312.
[154] Gonzalez-Navarro N. H., Braco L. Improving lipase activity in solvent-free media by interfacial activation-based molecular bioimprinting J. Mol. Catal 1997 B3, N 1–4:1111–1119.
[155] Mishra K., Griebenow K., Klibanov A. M. Structural basis for the molecular memory of imprinted polymers in anhydrous media Biotechnol. Bioengn 1996 52, N 5:609–614.
[156] Klibanov A. M. Enzyme memory. What is remembered and why? Nature 1995 374:596.
[157] Lion-Dagan M., Willner I. Nitrospiropyran-modified -chymotrypsin, a photostimulated biocatalyst in an organic solvent: effects of bioimprinting J. Photochem. and Photobiol. A: Chemistry 1997 108, N 2–3:247–252.
[158] Peissker F, Fischer L. Crosslinking of imprinted proteases to maintain a tailor-made substrate selectivity in aqueous solutions Bioorg. Med. Chem 1999 7:2231–2237.
[159] Shinkai S., Yamada M., Sone T., Manabe O. Template synthesis from starch as an approach to tailor-made «Cyclodextrin» Tetrahed. Lett 1983 24:3501–3504.
[160] Wulff G., Kubik S. Helical amylose complexes with organic ligands Makromol. Chem 1992 193:1071–1080.
[161] Wulff G., Kubik S. Circular dichroism and UV-spectroscopy of complexes of amylose Carbohydr. Res. 1992 237:1–10.