УДК 577.323.433:576.316.352

СУПЕРСПИРАЛЬНАЯ ДНК ПОЛИТЕННЫХ ХРОМОСОМ CH IRONOMUS THUMMI

М. А. Шурдов, А. Д. Груздев

Введение. Экспериментальные данные последних лет свидетельствуют о том, что молекулы ДНК в ядрах клеток эукариот, так же как у прокариот, находятся в суперспирализованном состоянии [1, 2]. Есть основания полагать, что транскрипционная активность генов существенно зависит от степени суперспиральности их ДНК [3, 4]. Одним из путей выяснения этой зависимости является измерение суперспиральности ДНК локусов политенных хромосом во время формирования или регрессии в них пуфов. Однако существующие сейчас методы не применимы для измерений in situ. Предлагаемый в настоящей статье вариант микрофлюориметрического метода вполне адекватен поставленной задаче. Его чувствительность, ограниченная в основном шумами регистрирующей аппаратуры, может быть достаточно высокой. Поскольку при применении метода не требуется информации о количестве ДНК в измеряемом объеме, он может быть также использован в макро- или полумикровариантах, в том числе при определении суперсииральности ДНК после электрофореза непосредственно в гелях. Ниже излагается его применение для определения степени суперспиральности ДНК политенных хромосом хирономуса.

Матерналы и методы. В работе использовали личинок лабораторной линии *Ch. thummi.* Из ядер изолированных слюнных желез личинок четвертого возраста политенные хромосомы выделяли микроиглами в физиологическом растворе под бинокулярным микроскопом [5]. Состав раствора: 10 мМ трис-HCl, pH 7,3, 125 мМ NaCl, 1 мМ MgCl₂. Несколько наборов хромосом нацизывали на кончик стеклянной иглы, быстро погружали в 1 %-ный раствор низкотемпературной агарозы («Sigma», CША) при температуре 36—37 °C и возвращали в физиологический раствор. В результате проведенных манипуляций на кончике иглы образуется микрокапля застывшей агарозы, содержащая политенные хромосомы. Для их депротеинизации использовали растворы ступенчато повышающейся (через каждые 0,2 М) ионной силы от 0,35 до 1,95 М NaCl, содержащие 50 мМ трис-HCl, pH 7,3. Через 20 мин 1,95 М раствор NaCl заменяли на исходный в обратном порядке. Микроэлектрофоретический анализ показал, что для удаления гистонов достаточно пятиминутного пребывания хромосом в 1,95 М растворе NaCl.

В работе использовали также ДНК, выделенную из личинок *Ch. thummi* фенольным методом [6]. Средняя молекулярная масса этой ДНК, оцененная электрофоретически, превышала 4 · 10⁶.

Измерения интенсивности флюоресценции проводили на микрофлюориметре собственной конструкции, который отличался от описанного ранее [7] использованием инвертированного микроскопа.

Для определения степени суперспиральности (σ) суперспирализованную ДНК (сДНК) депротейнизированных политенных хромосом окрашивали различными концентрациями (С) бромистого этидия (БЭ). Для каждого препарата измеряли интенсивность флюоресценции БЭ, связанного с сДНК, до (I_c) и после (I_n) мягкой обработки препарата ДНКазой I или рестриктазой *EcoRI*. Условия обработки и измерения подбирали таким образом, чтобы исключить убыль нуклеотидного материала, поэтому единственным результатом нуклеазной обработки могла быть релаксация супервитков хромосомной ДНК.

При малых концентрациях красителя $(I_c/I_H) > 1$, поскольку отрицательно суперспирализованная ДНК обладает бо́льшим сродством к БЭ, чем линейная или релаксированная форма [8, 9]. По мерс увеличения посадки красителя на сДНК число отрицательных супервитков падает до нуля, а затем начинается образование положительных супервитков. У этой формы $(I_c/I_H) < 1$. Вполне очевидно, что при $(I_c/I_H) = 1$ константа связывания (K) и число мест посадки (v₀) красителя на суперспирализованиой и линейной молекулах ДНК совпадают. Зная плотность посадки красителя в этих условиях, нетрудно вычислить степень ее суперспиральности [1]: $-\sigma_0 = 1,44$ v₀.

БИОПОЛИМЕРЫ И КЛЕТКА.— 1988.— Т. 4, № 3

Обычно значение v_b определяется по известной концентрации красителя с помощью процедуры Скэтчарда [10]. Для цитологических препаратов, где концентрация ДНК неизвестна, необходимо использовать иной способ. В данном случае мы воспользовались тем обстоятельством, что плотность посадки БЭ на линейной молекуле ДНК

однозначно определяет анизотропию флюоресценции $\mu = \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} - 2I_{\perp}}$, которую легко измерить у цитологических образцов. (Здесь I_{\parallel} и I_{\perp} - суть интенсивности флюорес-

Рис. 1. Зависимость анизотропии флюоресценции комплекса БЭ — ДНК от плотности посадки красителя v, равной числу связанных молекул БЭ на пуклеотид ДНК

Fig. 1. Dependence of fluorescence anisotropy of the EtBr-DNA complexes on EtBr binding density v, v is the number of drug molecules bound per nucleotide

ценции, поляризованные параллельно и перпендикулярно поляризации возбуждающего пучка соответственню). Зависимости $\mu(C)$ и $\nu(C)$, полученные для линейных молекул ДНК хирономуса обычным способом, позволили построить требуемую градуировочную кривую $\mu(v)$, приведенную на рис. 1.

Результаты и обсуждение. Зависимость $\ln (I_c/I_n)$ от плотности посадки v красителя БЭ на сДНК депротеинизированных политенных хромосом представлена на рис. 2. Видно, что в точке $(I_c/I_n) = 1$ в физиологическом солевом растворе соответствует значение $v_0 = 0,065$ и — $\sigma_0 = 0,094$, тогда как в растворе 0,5 М NaCl — $v_0 = 0,075$ и — $\sigma_0 = 0,108$. Увеличение числа титруемых супервитков при повышении ионной силы раствора соответствует имеющимся представлениям о свойствах кольцевых молекул ДНК [1].

Полученный результат позволяет оценить число супервитков, приходящееся на один нуклеосомный повтор ДНК. Считая его длину 196÷200 нуклеотидных пар (н. п.), имеем 1,84÷1,88 витка, что песколько выше 1,75 витка ДНК в коровой частице, по меньше двух витков в полной нуклеосоме (хроматосоме) [11, 12]. Поэтому можно ожидать, что линкерная ДНК в нативном хроматине суперспирализована слабо, хотя величину и знак о предсказать невозможно.

При апализе формы кривых рис. 2 обращает на себя внимание паличие максимума при малых плотностях посадки красителя и плато — при больших плотностях. Если наличие плато объясняется тривиальным эффектом пасыщения ДНК красителем, то появление максимума, как мы полагаем, свидетельствует о переходе части ДНК в форму (или формы), «поглощающие» часть супервитков.

Действительно, для слабо суперспирализованной ДНК плазмиды pBR322 зависимость $\ln(I_c/I_n)$ от плотности носадки v (в области малых v) выражается линейной функцией (рис. 3). Такая же зависимость получена ранее иным способом для ДНК плазмиды PM2 [8]. Теоретическое объяснение этого факта сводится к тому, что начальный участок изотермы связывания красителя линеен, т.е. $I \sim KC$. Для линейной или релаксированной молекулы ДНК K_n действительно константа связывания, тогда как для сДНК

$$K_{\rm c} = K_{\rm H} \exp\left(a\left(v_0 - v\right)\right). \tag{1}$$

Отсюда очевидно, что при фиксированной концентрации красителя

$$\ln (I_c/I_B) = \ln (K_c/K_B) = a (v_0 - v).$$
(2)

Как видно из рис. 2, для сильно суперспирализованной ДНК политенных хромосом эта зависимость не является линейной. Именно поэтому мы предположили появление качественно новых форм ДНК в области низкой плотности посадки красителя. Критическая плотность супервитков, оцениваемая по положению максимума на рис. 2, в физиологическом солевом растворе равна $\sigma_k = -1,44 (v_0 - v_k) = -0,058$. Полученное значение хорошо согласуется со значением $\sigma_k = -0,063$, начиная с которого в ДНК вируса SV40 регистрируется появление Z-формы [13].

Рис. 2. Зависимость натурального логарифма отношения интенсивностей флюоресценции комплекса сДНК — БЭ и комплекса релаксированная ДНК — БЭ от плотности посадки красителя на сДНК: 1 — физиологический солевой раствор; 2 — раствор 0,5 M NaCl

Fig. 2. Dependence of the natural logarithm of the ratio of the fluorescence intensities of the supercoiled DNA-EtBr complex and the nicked DNA-EtBr complex on density of the EtBr binding to the *Chironomus thummi* supercoiled DNA

Рис. 3. Зависимость натурального логарифма отношения интенсивностей флюоресценции комплекса БЭ — ДНК в суперспирализованной и релаксированной форме от плотности посадки красителя на сДНК плазмиды *pBR322*

Fig. 3. Dependence of natural logarithm of the ratio of the fluorescence intensities of the supercoiled DNA-EtBr complex and the nicked DNA-EtBr complex on density of the EtBr binding to the superhelical pBR322 DNA

При увеличении числа сверхвитков в ДНК политенных хромосом, т. е. при уменьшении плотности посадки красителя ниже v_k , плотность суперспиральности основной формы ДНК не только не возрастает, а даже падает (по модулю) до $|\sigma| = 1,44 (v_0 - v_1) = 0,033$. Следовательно, появившаяся новая форма ДНК способна не только компенсировать избыток числа супервитков пад их критическим уровнем, но и захватить часть имевшихся ранее. Подобной кооперативностью, как известно, обладают переходы из В-формы в крестообразную и Z-формы [14, 15].

Нетрудно оценить долю ДНК политепных хромосом, перешедшую в неканоническую форму. Так, переход *n* пар оснований из В-формы в крестообразную приводит к их раскрытию, т. е. полностью снимает $\Delta \tau = n/\gamma_0$ отрицательных супервитков (здесь γ_0 — среднее число пар оснований, приходящееся на виток двойной спирали в линейной ДНК). Отсюда доля пар оснований, участвующих в переходе, равна

$$(n/N) = \frac{\Delta \tau \gamma_0}{N} = \Delta \sigma.$$
(3)

Если же следствием всех переходов является Z-форма, то спиральная закрутка ДНК меняется на $\Delta \tau = n (I/\gamma_0 - I/\gamma_2)$ витков. Учитывая, что для левоспиральной Z-формы $\gamma_Z = -12$, получаем $(n/N) = \Delta \sigma/1.8$.

С другой стороны, из кривой $\ln(I_c/I_H)$ на рис. 2 видно, что переходы осуществляются в диапазоне плотностей супервитков, равном $\Delta \sigma = 1,44 v_1 = 0,06$. Отсюда для крестов (n/N) = 0,06 (или 6%), а для B-Z-переходов $(n/N) \simeq 0,03$ (или 3%).

БИОПОЛИМЕРЫ И КЛЕТКА.— 1988.— Т. 4, № 3

Очевидно, что в действительности реализуются оба пути, а также другие переходы, ведущие к сбросу напряжений сДНК [16]. Часть из них происходит, по-видимому, довольно синхронно после достижения критической плотности σ_k . Синхронность переходов свидетельствует, по нашему мнению, в пользу того, что все домены ДНК политенной хромосомы суперспирализованы примерно одинаково. В противном случае для обеспечения синхронности переходов необходимо дополнительное предположение о более легких конформационных переходах в доменах с меньшей $|\sigma|$ по сравнению с высоко суперспирализованными доменами. Напомним, что измеренная в эксперименте суперспиральность сДНК близка к суперспиральности пуклеосомной ДНК. Тогда, учитывая примерно равномерное расположение гистонов по геному [17], также приходим к выводу о примерной гомогенности доменов.

Тем не менее в заключение коснемся вопроса роли гетерогенности доменов по степени суперспиральности их ДНК при измерении средней плотности $\overline{\sigma}$. Иными словами, попытаемся оценить, насколько измеренная величина σ_0 отличается от средневзвешенного значения плотности

$$\overline{\sigma} = \int_{\sigma_{\min}}^{\sigma_{\max}} \sigma f(\sigma) \, d\sigma, \qquad (4)$$

где $f(\sigma)$ — нормированная функция распределения доменов по степени суперспиральности. В эксперименте разные части распределения получают разные весовые множители, пропорциональные их вкладу в интенсивность флюоресценции. Выражение (2), справедливое для однородной фракции, можно переписать в виде:

$$(I_c/I_B) \sim \exp\left(a\left(1,44\nu - \sigma_i\right)\right). \tag{5}$$

Суммируя интенсивности всех фракций с учетом их встречаемости в образце при $v = v_0$ имеем:

$$(I_{c}/I_{H}) = \int_{\sigma_{\min}}^{\sigma_{\max}} f(\sigma) \exp(a(\sigma_{0} - \sigma)) d\sigma = 1.$$
(6)

Разлагая экспоненту в ряд и отбрасывая все члены, начиная с кубичного, получаем $\overline{\sigma}$ — $\sigma_0 = 0.35a \langle \Delta \sigma^2 \rangle$.

Таким образом, экспериментально измеренное значение плотности сверхвитков всегда несколько завышено по модулю относительно средневзвешенного.

Авторы выражают благодарность С. С. Богачеву за предоставление и характеризацию ДНК хирономуса; Ф. П. Свинарчуку за микрофоретический анализ белков политенных хромосом; Н. Г. Холодилову за предоставление препарата *EcoRI*, а также И. И. Кикшадзе за обсуждение результатов работы.

SUPERHELICAL DNA OF POLYTENE CHROMOSOMES CHIRONOMUS THUMMI

M. A. Shurdov, A. D. Gruzdev

Institute of Cytology and Genetics,

the Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk

Summary

The fluorescent micromethod of measurement of DNA superhelical density σ in solutions gels or chromosomes is proposed. EtBr intercalation is used to equalize the EtBr-binding properties of the supercoiled and nicked DNA molecules. The number of 1.84+1.88 left turns of DNA molecule per nucleosome is estimated from the measured value – σ =0.094 for the nucleoids of *Chironomus thummi* polytene chromosomes. Experimental data indicate that about 3÷6 % of DNA in the nucleoids adopts non-canonical forms when – σ ≥0.06.

- Bauer W. R. Structure and reactions of closed duplex DNA // Annu. Rev. Biophys. and Bioeng.— 1978.—7.— Р. 287.—313.
 Филиппович И. В., Сорокина Н. И. Суперспиральная ДНК клеточного ядра // Ус-пехи соврем. биологии.— 1983.—95, № 2.— С. 163—180.
 Fisher M. L. DNA supercoiling and gene expression // Nature.— 1984.—307, N 5953.— Р. 686—687.

- 4. Грагеров А. И., Миркин С. М. Влияние сверхспирализации ДНК па основные ге-нетические процессы у прокариот // Молекуляр. биология.— 1980.—14, № 1.— C. 8—34.
- 5. Груздев А. Д., Белая А. Н. Влияние концентрации водородных ионов, топичности и ионной силы на размеры политенных хромосом // Цитология.— 1968.—10, № 3.— C. 297—305.
- Фрич Э., Сэмбрук Дж. Молекулярное клонирование. М.: Мир, 6. Маниатис Т., 1984.---477 c.
- Gruzdev A. D., Kishchenko G. P. Fluorescence polarization of study of stretched poly-tene chromosomes stained with acridine orange // Biophys. Struct. and Mcch.— 1978.—
- 4, N 2.- P. 97-110.
 8. Hsieh T.-S., Wang J. C. Thermodynamic properties of superhelical DNAs//Biochemistry.- 1975.-14, N 3.- P. 527-535.
 9. Bauer W., Vinograd J. Interaction of closed circular DNA with intercalative dyes. 2. The energy of superhelix formation in SV40 DNA//J. Mol. Biol.- 1970.-47, N 4.- P. 419-435.
 10. Settemed. C. The extremation of notation for small malaxular and ions // Ann. N. Y.
- N 4.- P. 419-435.
 10. Scatchard G. The attractions of proteins for small molecules and ions // Ann. N. Y. Acad. Sci.- 1949.-51.- P. 660-672.

- Acad. Sci.— 1949.—51.— P. 600—672.
 11. Structure of the nucleosome core particle of chromatin / J. T. Finch, L. C. Lutter, D. Rhodes et al. // Nature.— 1977.—269, N 5623.— P. 29—36.
 12. Periodicity of dcoxyribonuclease I digestion of chromatin / A. Prunell, R. D. Kornberg, L. C. Lutter et al. // Science.— 1979.—204, N 4395.— P. 855—858.
 13. Nordheim A., Rich A. Negatively supercoiled simian virus 40 DNA contains Z-DNA segment within transcriptional enhancer sequences // Nature.— 1983.—303, N 5919.— P. C. 4. 6724. P. 674—679.
- 14. Lyamichev U. I., Panyutin I. G., Frank-Kamenetskii M. D. Evidence of cruciform Lyamichev U. I., Panyutin I. G., Frank-Kamenetskii M. D. Evidence of cruciform structures in superhelical DNA provided by two-dimensional gel clectrophoresis // FEBS Lett. 1983. 153, N 2. P. 298-302
 Frank-Kamenetskii M. D., Vologodskii A. V. Thermodynamics of the B-Z transition in superhelical DNA // Nature. 1984. 307, N 5950. P. 481-482.
 Nicol J. M., Felsenjeld G DNA conformation at the 5' end of the chicken adult β-globin gene // Cell. 1982. 35, N 2. P. 467-477.
 Gorovsky M. A., Woodward J. Histone content of chromosomal loci active and inactive in RNA synthesis // J. Cell. Biol. 1967. 33, N 3. P. 723-728.

Ин-т цитологии и генетики Сиб. отд-ния АН СССР, Новосибирск

Получено 08.08.86

MIK 577.217.5:577.18.02

СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ МАТРИЧНОЙ АКТИВНОСТИ ПОЛИ(U) И ПОЛИ(dT) В БЕСКЛЕТОЧНЫХ БЕЛОКСИНТЕЗИРУЮЩИХ СИСТЕМАХ ИЗ ESCHERICHIA COLI И ЗАРОДЫШЕЙ ПШЕНИЦЫ

А. П. Потапов, К. А. Солдаткин, А. П. Солдаткин, А. В. Ельская

Введение. Для объяснения молекулярного механизма кодонзависимого отбора аминоацил-тРНК на рибосоме и транслокации была предложена гипотеза о стереоспецифической стабилизации кодон-антикодоновых комплексов при трансляции [1, 2]. Центральным положением гипотезы является допущение о прямом взаимодействии некоторого участка рибосомы Х с кодон-антикодоновым дуплексом. Предполагается, что формирование тройного комплекса Х (кодон—антикодон) необходимое условие точной селекции аминоацил-тРНК в А-центре рибосомы и затем правильной транслокации этой тРНК (в форме пептидил-тРНК) из А- в Р-центр. Специфичность сборки тройного комплекса определяется постулируемой гипотезой стереоспецифичностью Х к комплементарным кодон-антикодоновым парам, опознаваемым по пространственной структуре их сахаро-фосфатных остовов [1, 2].

БИОПОЛИМЕРЫ И КЛЕТКА.— 1988.— Т. 4, № 3 4 - 8-92