М. В. Личина, Г. В. Костюк, Ю. И. Митрохин, А. В. Шугалий

РЕСТРИКЦИОННЫЙ АНАЛИЗ ДНК ТИМУСА И СЕЛЕЗЕНКИ КРЫС, γ-ОБЛУЧЕННЫХ В ДОЗЕ 5 Гр*

Спустя 15—3 ч после однократного у-облучения крыс общий характер EcoRI-распределения остается неизменным, но доля некоторых рестрикционных фрагментов варыирует. Вклад фрагментов размером 2300 и 1500 пар нуклеотидов увеличивается в 2— 3,5 раза, фрагмента 345 п. н.— уменьшается в 5—10 раз. В тимусе изменения происходят через 3 ч, в селезенке — через 1,5 ч после облучения с дальнейшей тенденцией к нормализации.

Введение. В исследованиях молекулярных основ действия ионизирующего облучения на ДНК основное внимание уделялось, как правило, структурным нарушениям. К ним относились радиационно-химические изменения оснований, разрывы сахаро-фосфатного остова, одно- и двунитчатые разрывы, дестабилизация вторичной И надмолекулярной структуры, изменения характера ДНК-белкового взаимодействия в составе хроматина. Возникновение большинства этих повреждений носит обратимый характер, поскольку их окончательный вклад существенно модулируется системами репарации. Указанные аспекты достаточно подробно отражены ряде обзоров и монографий (см., напри-B мер, [1--4]).

В последние годы при анализе возможных реакций генома на облучение интерес вызывает проблема его нестабильности. Некоторые структурные перестройки, связанные, прежде всего, с амплификацией генов и онкогенов в облученных клетках, проанализированы в одном из обзоров [5]. Приведенные там данные касаются лишь ограниченного круга объектов — культур трансформированных клеток млекопитающих, в которых в результате облучения происходит амплификация индикаторной последовательности, чаще всего ДНК SV40. В то же время, кроме специфической генной амплификации (наиболее яркий пример возникновение лекарственной устойчивости в результате селекции), реализуется, как правило, ситуация, когда амплификации подвергаются участки генома, состоящие суммарно из десятков и сотен тысяч пар нуклеотидов [6]. Изменения такого масштаба в ДНК животных доступны для регистрации уже на уровне суммарного препарата.

Для получения информации о возможном геномном ответе при облучении организма мы проанализировали характер рестрикционного расщепления ДНК двух радиочувствительных органов облученной крысы — тимуса и селезенки. Подобный подход уже был использован для анализа области рДНК клеток S. uvarum, растущих 24 ч после облучения рентгеновскими лучами, но каких-либо изменений не обнаружено из-за возможной, как считают авторы, репарации [7].

Мы провели EcoRI-рестрикцию суммарной ДНК спустя 1,5 и 3 ч после у-облучения. Чтобы получить возможность детализации рестрикционного распределения для электрофореза была использована не агароза, в которой для животной ДНК наблюдается сплошной мазок, а

ISSN 0233-7657, БИОПОЛИМЕРЫ И КЛЕТКА, 1994, Т. 10, № 1

^{*} Представлена членом редколлегии Н. В. Желтовским.

[©] М. В. Личина, Г. В. Костюк, Ю. И. Митрохин, А. В. Шугалий, 1994

градиент концентрации полиакриламидного геля (ПААГ). В нем четко регистрируется набор *EcoRI*-рестрикционных полос ДНК крысы [8]. Выбранная доза ү-облучения для крысы близка к параметру $LD_{50/30}$ [2].

Матерналы и методы. у-Облучение беспородных крыс-самцов массой 150—180 г проводили на кобальтовой установке с мощностью дозы 0,25 Гр/мин. В опыте использовали материал органа, полученный из 2—3 крыс. ДНК выделяли гуанидинтиоцианатным методом [9] с последующей очисткой смесью хлороформ изоамиловый спирт. Метод обеспечивает исключительно высокую степень очистки от клеточных

Рис. 1. Электрофоретическое распределение рестрикционных фрагментов ДНК печени крысы в градиенте 3—8%-го ПААГ. Соотношение *EcoRI/ДНК* составляет 16:1, контрастирование бромистым этидием

Рис. 2. Сканограмма *EcoRI*-распределения ДНК печени крысы: 1 — контрастирование бромнстым этидием, содержание ДНК в полосе 40 мкг; 2 — контрастирование азотнокислым серебром, содержание ДНК в полосе 0,04 мкг. Обозначение фрагментов и их размеры взяты из работы [8]

компонентов и полимерность ДНК. Подготовленные для рестрикции препараты ДНК имели следующие характеристики: отношения $D_{260}/D_{280} = 2,1\pm0,1;$ $D_{260}/D_{230} = 2,5\pm0,1,$ степень гиперхромизма 38—41 %. Использовали рестриктазу *EcoRI* (НПО «Фермент», Вильнюс), отношение фермент/ДНК, если не оговаривалось, составляло 16:1. Градиент концентрации ПААГ был 3—8 %, электрофорез осуществляли при напряжении 35 В в течение 14—16 ч. Сканирование гсля проводили на денситометре ДМ-1 (СССР) с последующей оценкой доли каждого фрагмента взвешиванием.

Результаты и обсуждение. На рис. 1 и 2 представлены типичная *EcoRI*-рестрикционная картина ДНК печени крысы и ее сканограмма. Распределение имеет отчетливые полосы, их взаимное расположение и относительный вклад в точности совпадают с *EcoRI*-распределением в работе [8], поэтому мы сохранили прежнюю маркировку полос. Видно, что достаточно хорошо разрешаются фрагменты 90—500 п. п. (рис. 2, кривая 1), а более протяженные — маскируются из-за значительного фонового сигнала. Для его уменьшения мы снизили нагрузку на полосу по сравнению с обычно используемой при контрастировании животной ДНК бромистым этидием и применили альтернативный прием контрастирования азотнокислым серебром [10] с нашей модификацией регистрации — фотометрированием непосредственно геля [11]. Это позволило при снижении количества нанесенного материала в $\sim 10^3$ раз достичь удовлетворительного разрешения фрагментов вплоть до ~ 2000 п. н. (рис. 2, кривая 2).

Сканограммы обрабатывали следующим образом. Для каждого препарата (тимуса или селезенки) были получены сканограммы контрольной ДНК и спустя 1,5 и 3 ч после облучения. Затем вычисляли

Рис. 3. Относительный вклад фрагментов *EcoRI*-рестрикции ДНК тимуса и селезенки крыс спустя 1,5 (1) и 3 ч (2) после у-облучения. По оси ординат — величина отношения доли фрагментов, по оси абсцисс — обозначения фрагментов, как на рис. 2. Штриховая линия на уровне отношения 1,0 отвечает постоянству вклада фрагмента в опыте и контроле. Указана величина стандартной ошибки определения

Рис. 4. Изменение относительного вклада фрагментов EcoRI-рестрикции после частичной гепатэктомии: I = фрагмент B, 1500 п. н.; 2 = фрагмент C, 900 п. н.; 3 = фрагмент F, 345 п. н. По оск ординат — величина отношения доли фрагмента (опыт/контроль), по оси абсцисс — сроки (ч) после гепатэктомии. Штриховая линия и ошибка, как на рис. 3

относительный вклад каждого фрагмента в распределение и составляли отношение этих величин (опыт/контроль). Неизменность вклада при переходе от контроля к опыту означала бы, что отношение должно поддерживаться на уровне 1,0.

Данные рис. З иллюстрируют результаты подобного расчета для каждого из фрагментов. Отметим, что слаборазрешаемые на сканограммах фрагменты D', D, C' и B' (рис. 2, кривая 2) не вошли в окончательный расчет, поскольку точность их определения не слишком высока. Средняя ошибка определения отношения для остальных фрагментов составляет 10—15 % величины, т. е. неизменному вкладу фрагмента отвечает отношение 0,85—1,15. Эта ситуация реализуется для большинства фрагментов, что подтверждает корректность предложенного способа оценки. На этом фоне выделяются фрагменты A, B и F, для них происходит изменение вклада. Для тимуса реакция на γ -облучение наступает через 3 ч, при этом доля фрагментов A и B увеличивается в 2—2,5 раза, а фрагмента F — снижается в \sim 10 раз. Для селезенки эффект проявляется уже через 1,5 ч, а через 3 ч ситуация приобретает тенденцию к нормализации.

Подобное изменение относительного вклада рестрикционных фрагментов не является уникальным для у-облучения. На рис. 4 приведены результаты аналогичного расчета для нескольких фрагментов *EcoRI*рестрикции ДНК печени крысы в различные сроки после частичной гепатэктомии. В отличие от γ -облучения доля фрагмента B не изменяется (кривая I), зато доля фрагмента C к 12-му ч увеличивается в ~ 3 раза (кривая 2), хотя при облучении его вклад был постоянным. В то же время тенденция для фрагмента F остается той же — эффект проявляется только в уменьшении его вклада (кривая 3).

Одним из возможных факторов, влияющих на характер рестрикционного расщепления, является метилирование сайтов. В более общем плане вопрос стоит о влиянии на рестрикцию модифицированных, в том числе и аддуктных, дезоксинуклеотидов, которые могут появиться в сайтах рестрикции при различных воздействиях на клетку [12, 13]. Из полученных нами *EcoRI*-фрагментов достаточно хорошо известен лишь фрагмент J [14]. Он представляет собой тандемно организованный сателлит I крысы (92/93 п. н.), в виде тетрамера фрагмент ассоциирован с фракцией ядерного матрикса [15]. В составе J частота СрG превышает средний показатель для суммарной ДНК крысы в 2,3 раза [14], причем появление 5meC в составе динуклеотидов или непосредственно затрагивает сайты *EcoRI*-расщепления тетрамера 370 п. н., или соседствует с ними.

В отсутствие изошизомера *EcoRI* мы попытались косвенным путем оценить возможность влияния метилирования, проводя рестрикцию при различных соотношениях фермент/ДНК. Видно (таблица), что при используемом нами максимальном соотношении 16:1 доля фрагмента *J* в опыте и контроле совпадает, хотя при меньшем соотношении скорость рестрикции в опыте несколько замедляется в соответствии с возможным влиянием метилирования остатков цитозина в *EcoRI*-сайтах [14].

Другим фактором, влияющим на рестрикционное распределение, могут быть ДНК-связывающие белки, которые прочно ассоциированы с дуплексом и не диссоциируют при выделении ДНК. Известен, например, класс белков с молекулярной массой 43 000, которые активируются в культуре клеток человека у-облучением и транспортируются из цитоплазмы в ядро [16]. Участком их связывания на ДНК является достаточно специфическая нуклеотидная последовательность, выявленная в модельном эксперименте с энхансером SV40 — она включает адениновый динуклеотид, как, кстати, в сайте *EcoRI*-рестрикции GAATTC. При этом ДНК-связывающие белки не обязательно должны маскировать сайт рестрикции непосредственно — для изменения узнавания достаточно вариации конформации двухспиральной ДНК в окрестностях этого сайта [17].

Указанные факторы, несомненно, могут влиять на рестрикционное узнавание, однако при прогнозировании или оценке их вклада следует учесть, что в наших экспериментах мы имеет дело не с уникальным фрагментом, а с семейством повторов с частотой $5 \cdot 10^3 - 10^4$, как у F, или $\sim 10^6$, как у J [8]. Координированное влияние на них перечисленных факторов при дисперсном распределении по геному весьма маловероятно, для подобного влияния они должны формировать многочисленные тандемные кластеры и быть локализованными в специфических участках генома. В принципе, такую возможность нельзя полностью исключить, тем более что для фрагмента J реализуется сходная ситуация [15].

Наконец, причиной вариации числа сайтов узнавания некоторых повторяющихся фрагментов может являться амплификация — элиминация, обусловленная сверх- или ошибочной репликацией (replicon misfi-

	Соотношение			
днқ	2:1	6:1	16:1	
Печени, контроль После частичной гепатэктомии, 12 ч	0 ,55 0,36	1,05 0,70	1,0 I,1	

Доля	фрагмента .	I = 93 n.	н. (в ч	% генома)	при	различных	соотношениях	фермент	ДНК

ring, по терминологии автора работы [18]), а также иными клеточными механизмами, включающими транслокации и делеции [19]. Этот феномен ассоциирован с широким кругом воздействий как естественных — старение, тепловой шок, гипоксия, гормоны, так и искусственных — лекарственные соединения, облучение различной природы, канцерогены [6, 19-21]. Поэтому не выглядит случайным обнаруженное клеточной нами изменение количества рестрикционных фрагментов ДНК для воздействий различного рода — ингибирования белкового синтеза, облучения, стимулирования пролиферации.

Перечисленные факторы — изменение конкретной нуклеотидной последовательности в рестрикционном сайте, маскирование расщепления за счет белкового компонента или конформационного влияния самой <u> ДНК, изменение копийности — способны каждый в отдельности или в</u> комбинации привести к вариации числа тех или иных фрагментов рестрикции. Кроме потенциальной амплификации — элиминации, остальные факторы, в сущности, приводят к одному и тому же результату нарушению исходной доступности определенных сайтов ДНК для узнавания рестриктазой и вариации картины EcoRI-рестрикции. Выяснение роли облучения как одного из воздействий, инициирующх подобные изменения, представляется нам достаточно перспективным для понимания молекулярных механизмов его действия на клетку.

М. В. Личина, Г. В. Костюк, Ю. І. Митрохін, О. В. Шугалій

РЕСТРИКЦІЙНИЙ АНАЛІЗ ДНК ТИМУСА I СЕЛЕЗІНКИ ЩУРІВ, у-ОПРОМІНЕНИХ У ДОЗІ 5 Гр

Резюме

Через 1,5-3 год після одноразового у-опромінення щурів загальний характер EcoRI-розподілення залишається незмінним, але частка декотрих рестрикційних фрагментів варіює. Вклад фрагментів розміром 2300 і 1500 пар нуклеотидів збільшується у 2—3,5 раза, фрагмента 345 п. н.— эменшується у 5—10 разів. У тимусі эміни відбуваються через 3 год., у селезінці — через 1,5 год. після опромінення з подальшою тенденцією до нормалізації.

M. V. Lichina, G. V. Kostuk, Yu. I. Mitrochin, A. V. Shugatii

THE RESTRICTION ANALYSIS OF THYMUS AND SPLEEN DNA OF A RAT y-IRRADIATED AT DOSE 5 Gy

Summary

1,5–3 hours after a single γ -irradiation of a rat the common pattern of EcoRI-restriction is unchanged but the parts some restriction fragments varied. The concentration of a fragments 2300 and 1500 base pairs rises in 2-3,5 times, fragment 345 base pair declines in 5-10 times. In a thymus the variations are occured after 3 hours, in a spleen - i,5 hours after y-irradiation with a future tendency to normalization.

СПИСОК ЛИТЕРАТУРЫ

- 1. Комар В. Е., Хансон К. П. Информационные макромолекулы при лучевом поражении клеток.— М.: Атомиздат, 1980.— 175 с.
- 2. Когел Дж. Биологические эффекты радиации / Под ред. А. Н. Деденкова.— М. : Энергоатомиздат, 1986.—184 с. 3. George A. M., Cramp W. A. // Progr. Biophys. and Mol. Biol.—1987.—50, N 3.—
- P. 121-169.
- 4. Москалева Е. Ю., Ильюшина Н. А. // Итоги науки и техники.- М.: ВИНИТИ. 4. Поскалева Б. 10., Плонана П. Л. // Попа ваука в Техника. - (1. ВППППП, 1990. - С. 5. 113.- (С. Радкац. биология; Т. 9).
 5. Сынзыныс Б. И., Саенко А. С., Пелевина И. И. // Там же. - С. 114-213.
 6. Stark G. R., Wahl G. M. // Annu. Rev. Biochem. - 1984. - 53. - P. 447-491.
 7. Kreiss M., Baumstark-Khan C., Rink H. // Int. J. Radiat. Biol. - 1986. - 49, N 4. - D. 2002.

- P. 702.
- 8. Lapeyre J.-M., Becker F. F. // Biochim. et biophys. acta. 1980. 607, N L.---P. 23-34.

- 9. Спитковский Д. Д., Зборовская И. Б., Киселев Ф. Л. // Молекуляр. биология.— 1986.— 20, № 5.— С. 1409—1421.
- 1980.— 20, № 5.— С. 1409—1421. 10. Lomholt B., Frederiksen S. // Anal. Biochem.— 1987.— 164, N 1.— Р. 146—149. 11. Личина М. В., Шугалий А. В., Тодоров И. Н. VI Конф. по спектроскопни биопо-лимеров.— Харьков, 1988.— С. 194—195. 12. Voigt J. M., Topal M. D. // Biochemistry.— 1990.— 29, N 6.— Р. 1632—1637. 13. Richardson F. C., Richardson K. K. // Mol. Carcinogenesis.— 1991.— 4, N 2.—
- P. 162-168.
- 14. Pech M., Igo-Kamenes T., Zachau H. G. // Nucl. Acids Res.- 1979.- 7, N 2.-P. 417-432.
- Asano S., Hibino Y., Ikeda Y. et al. // Biochem. Int. 1989. 19, N 4. P. 871-880.
 Singh S. P., Lavin M. F. // Mol. and Cell. Biol. 1990. 10, N 10. P. 5279-5285.
 Azorin F., Hahn R., Rich A. // Proc. Nat. Acad. Sci. USA. 1984. 81, N 18. P. 5714-5718.
- Varshavsky A. // Ibid.— 1981.— 78, N 6.— P. 3673—3677.
 Stark G. R., Debatisse M., Giulotto E., Wahl G. H. // Cell.— 1989.— 57, N 6.— P. 901-908.
- Schimke R. T., Sherwood S. W., Hill A. B., Johnston R. N. // Proc. Nat. Acad. Sci. USA. 1986. 87, N 7. P. 2157 2161.
 Schimke R. T. // J. Biol. Chem. 1988. 263, N 13. P. 5989 5992.

Ин-т хим, физики РАН, Черноголовка

i

Получено 22.09.93