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In carcinogenesis, tumor cells acquire certain cancer hallmarks based on the changes at 
various molecular levels. This review discusses abnormalities in cancer cells at the genetic 
and epigenetic levels. Genetic alterations are considered in the example of seven cancers, 
including lung, breast, prostate, colorectal, renal, cervical, and ovary cancers. Genetic 
changes disrupt the functioning of both oncogenes and tumor suppressor genes and occur 
as deletions, amplifications, chromosomal aberrations and chromosomal loci, thousands of 
somatic mutations and the appearance of oncogenic fusion transcripts etc. Epigenetic aber-
rations are also multifa ce ted. These include hypermethylation and hypomethylation of gene 
promoters, histone modifications, changes in non-coding RNA expression profiles etc. Genetic 
and epigenetic disorders are tumor-specific and common for many cancer types. The deve-
lop ment of modern large-scale methods for detecting genetic and epigenetic alterations 
makes it possible to detect simultaneously these aberrations and molecular profiles of dif-
ferent cancer types. Many of these alterations could be the targets for cancer diagnosis and 
the development of effective treatments.
K e y w o r d s: carcinogenesis, oncogenes, tumor suppressor genes, deletions, amplification, 
LOH, somatic and germline mutations, promoter methylation, noncoding RNA, NGS

Introduction

Human malignant neoplasms are a diverse 
group of diseases with numerous genetic ab-
normalities in cells that become cancerous. 
Their appearance in combination with sys-
temic changes at the level of the body leads to 
the appearance and progression of tumors [1].

The malignant epithelial tumors (cancers) 
account for more than 90 % of all malignan ces, 
which are often diagnosed at late stages, and 
treatment of patients is expensive and some-
times ineffective with a low 5-year survival 
rate [2, 3].
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In the process of malignant transformation 
and progression of malignant neoplasms, tumor 
cells acquire certain cancer hallmarks accom-
panied by changes at the molecular level of 
organization (genetic, epigenetic, transcrip-
tomic, proteomic, metabolomic, etc.) [4–6].

These alterations are both tumor-specific 
and general, inherent in many types of epithe-
lial tumors [7]. The main carcinogenic char-
acteristics are acquired by the tumor cells due 
to certain mechanisms in a different order of 
genetic and epigenetic disorders [4, 5]. It is 
this variety of molecular aberrations that 
causes problems in the diagnosis, treatment 
and prognosis of the disease. In recent years, 
thanks to the development of modern methods 
of molecular biological research (next genera-
tion sequencing (NGS), microarrays, FISH 
analysis), many alterations associated with the 
development of tumors have been identified 
[8, 9]. These include chromosomal rearrange-
ments, deletions, amplifications of chromo-
somes, chromosome loci and genes, the emer-
gence of oncogenic fusion transcripts, thou-
sands of somatic mutations in genes, hyper-
methylation and hypomethylation of gene 
promoters, histone modifications, and changes 
in non-coding RNA expression profiles [10–
12]. Additionally, many changes in carcino-
genesis are also inherent in mitochondrial 
DNA [13]. All these disorders affect gene ex-
pression, which leads to pathological changes 
in tissues and provokes the acquisition of ma-
lignant properties by cells [4, 6]. According to 
current knowledge, hundreds of genes are in-
volved in carcinogenesis [14]. On account of 
their properties to activate or inhibit tumor 
growth, they are conventionally divided into 
oncogenes and tumor suppressor genes [15].

Genetic and epigenetic alterations 
in tumor-associated cellular pathways 
and genes. Oncogenes and tumor 
suppressor genes
The carcinogenesis of epithelial tumors has the 
following stages of development: tumor ini-
tiation, promotion, progression, and metastasis 
[16]. It is not known for certain which chan ges 
are highly specific to each stage, but it is 
known that genetic, epigenetic, and abnormal 
expression of many genes and proteins is ob-
served throughout all stages of the disease. In 
recent years, thanks to the development of 
modern methods of molecular biological re-
search (microarrays, FISH analysis, NGS), 
a lot of molecular disorders at DNA, RNA, 
protein levels, associated with the development 
of tumors, have been identified [8, 9, 10].

All these alterations affect gene expression, 
which leads to pathological changes in the func-
tioning of cellular processes and cellular me-
tabolism and provokes the acquisition of onco-
genic properties by cells [4, 5]. According to 
current knowledge, hundreds of genes are in-
volved in carcinogenesis [14]. Both oncogenes 
and suppressor genes, belong to certain cell 
signaling pathways involved in carcinogenesis 
[17]. Among the tumor-associated cellular path-
ways, the following should be noted as very 
important: p53, Rb, TGF-B, VEGF, HIF1, 
PI3K-Akt, Jak-STAT, mTOR, cAMP, MAPK, 
PPAR, Notch, Wnt-b-catenin, Hedgehog, extra-
cellular matrix interaction and adhesion path-
ways, apoptosis, androgen and estrogen recep-
tor pathways, prostaglandins, cytokine recep-
tors, calcium signaling pathway, and others 
[18–22]. These pathways intersect, forming a 
complex biological network of interactions. 
Additionally, the combination of activated on-
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cogenic pathways and inactivated tumor sup-
pressor genes will differ in each type of tumor, 
as well as in individual tumors [23, 24].

Genetic alterations in carcinogenesis
Human cancers are known to have multiple 
somatic genetic alterations caused by point 
mutations, recombinations, amplifications, 
and/or deletions. The genes with genetic aber-
rations include both oncogenes and tumor sup-
pressor genes, that control DNA repair, and 
the genes that accelerate proliferation and me-
tastasis [25–27].

It is known that during each phase of car-
cinogenesis, certain genetic alterations occur 
in cancer cells, both of a common co-neoplas-
tic nature, and organ/tissue-specific changes 
[28–31].

Human cancers have all known genetic 
alterations that are classified according to the 
extent to which DNA has been damaged [11]. 
First of all, they are divided into two big 
groups, namely large and small genetic DNA 
alterations.

Large DNA alterations cover dozens of 
genes and can change the structure of chromo-
somes through loss, gain, or rearrangement of 
chromosomal segments [32]. The reason for 
these aberrations is chromosomal instability, 
which can lead to aneuploidy, loss of hetero-
zygosity (LOH), changes in the number of 
gene copies (copy number variations), struc-
tural rearrangements of chromosomes [33]. 
These damages lead to four types of chromo-
somal structural aberrations including inver-
sions, deletions, duplications, and transloca-
tions of genomic DNA fragments, which in-
clude cancer-associated genes, in particular 
oncogenes and tumor suppressor genes [34]. 

Chromosomal translocations have a huge on-
cogenic influence in many cancer types [35, 
36]. LOH in carcinogenesis plays an important 
role in functional inactivation of many tumor 
suppressor genes. Detection of LOH is one of 
the methods of its identification on chromo-
some [37]. It can affect up to 20 % of the 
genome of cancer cells. LOH targeting could 
be used for the development of novel antican-
cer drugs [38]. On the one hand, numerous 
structural chromosomal aberrations increase 
chromosomal instability which in turn causes 
new oncogenic genetic alterations in carcino-
genesis [39, 40].

Small DNA alterations usually cover only 
one gene or intergene space. It could be rep-
resented by the most numerous point mutations 
like single nucleotide variation, as well as 
fragment damages within the gene and the 
intergenic region [41, 42]. The point mutations 
result from single base pair substitutions, inser-
tions, or deletions. There are numerous altera-
tions occurring in carcinogenesis [43, 44] 
which include both oncogenes and tumor-
suppressor genes.

As an example, Table 1 (a–d) shows the 
most common and known genetic and epige-
netic alterations in the seven most common 
locations of human adenocarcinomas.

Numerous genetic aberrations, as shown in 
Table 1 a–d, occur during carcinogenesis both 
at the level of human chromosomes and at the 
level of genes in genomic DNA. There are 
genetic changes, which are common for diffe-
rent cancer types and genetic abnormalities that 
differ within the same type of tumor. Besides, 
there are specific alterations for a particular 
type of cancer [45, 46]. For example, in the 
study of lung cancer the tumor-associated mu-
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Table 1. The most common and typical genetic and epigenetic alterations in a number of malignant 
epithelial tumors (cancers)
Table 1a

Cancer 
localization

A B
ReferenceAltered 

chromosomes &
Type of 

alteration Gene/Function Type of gene 
alteration

Lung 
cancer

3p, 4q, 5q, 10q, 13q

7q, 8p, 11p, 12p, 14q

Del., loss 
of part of 
Chr.short/
long arm

ampl.

TP53 (17p13.1)
(TSG)
EGFR (7p11.2) (OG)
MYC (8q24.21) (OG)
KRAS (12p12.1) (OG)
ERBB2 (HER2) (17q12) (OG)
PIK3CA(3q26) (OG)
FHIT (3p14.2) (TSG)
RASSF1 (3p21.3) (TSG)
SEMA3B (3p21.3) (TSG)
EML4-ALK (OG)

s.m.
s.m.
ampl.
ampl., s.m.
ampl., s.m.
ampl., s.m.
del.
del., phm
del., phm
del., phm
fusion

[48–56]

Breast 
cancer

1p, 1q, 3p, 6q, 8p, 
11q, 13q, 16q, 17p, 
17q

Del., ampl., 
LOH

HRAS (11p15.5), (OG)
KRAS (12p12.1), (OG)
NRAS (1p13.2) (OG)
TP53 (17p13.1) (TSG)
ERBB2 (HER2) (17q12) (OG)
CCND1 (11q13.3) (OG)
FGFR1 (8p11.23) (OG)
BRCA1 (17q21.31) (TSG)
BRCA2 (13q13.1) (TSG)
PTEN (10q23.31)(TSG)
CDH1 (16q22.1) (TSG)

s.m.
s.m.
s.m.
s.m.
ampl.
ampl.
ampl.
g.m.
g.m.
g.m./s.m., lgcn
g.m./ s.m., LOH

[57–64]

Table 1b 

Cancer 
localization

A B
ReferenceAltered 

chromosomes &
Type of 

alteration Gene/Function Type of gene 
alteration

Prostate 
cancer

2p, 3q, 7q, 8q, 9q, 
17q, 20q, Xq

2q, 5q, 6q, 8p, 10q, 
12p, 13q, 16q, 17p, 
17q, 18q, 21q, 22q
7, 17

21q22

ampl. of 
parts of 
Chr. cancer-
assoc. SNP
del. of parts 
of Chr,
hyperploid., 
aneusomy,

numerous 
rearrang. 
TL- 
TMPRSS2/ 
ERG — 
the most 
frequent

AR (Xq12) (OG)
BRCA2 (13q13.1) (TSG)
CDKN1B (12p13.1) (TSG)
EZH2 (7q36.1) (OG)
KLK3 (PSA) (19q13.33) (OG)
GSTP1 (11q13.2) (TSG)

MYC (8q24.21) (OG)
NKX3.1 (8p21.2)(TSG)

TP53 (17p13.1) (TSG)
PTEN (10q23.31)
TMPRSS2-ERG (OG)

s.m.
g.m.
del., LOH
ampl.
SNP
s.m., phm,

ampl.
del., s.m., phm, 
LOH
g.m./s.m.
LOH, s.m.
fusion

[65–71]
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Cancer 
localization

A B
ReferenceAltered 

chromosomes &
Type of 

alteration Gene/Function Type of gene 
alteration

Colorectal 
cancer

1p, 5q
15q, 18q,
17p, 17q

7q, 8p

t(5;10) (q22;q25), 
inv(5) (q22q31.3)

aneuploidy, 
loss of 
Chr. parts, 
rearrang.
loss of Chr. 
parts,

ТL

APC (5q22.2), (TSG)
BRAF (7q34), (OG)
CTNNB1 (3p22.1), (OG)
EGFR (7p11.2) (OG)
KRAS (12p12.1), (OG)
MLH1 (3p22.2), (TSG)
PIK3CA (3q26.32), (OG)
PTEN (10q23.31) (TSG)
TP53 (17p13.1) (TSG/OG 
mutant)
AKT1 (14q32.33),(OG)
SOX9 (17q24.3) (TSG/OG)

g.m./s.m., LOH
s.m.
s.m.
s.m.
s.m.
g.m./s.m.,
s.m.
LOH, s.m.

s.m.
s.m.
s.m.

[72–77]

Table 1c

Cancer 
localization

A B
ReferenceAltered 

chromosomes &
Type of 

alteration Gene/Function Type of gene 
alteration

Renal 
cancer

3p
(3p12-14, 3p21, 
3p25)

7, 5 (5q22-qter), 8, 
10, 12, 18, 20
Y, 8p, 9p, 13q, 14q

Del., LOH, 
ТL,
Trisomy

Loss of 
Chr. parts, 
LOH

VHL (3p25.3) (TSG)

FHIT (3p14.2) (TSG)
RASSF1 (3p21.31) (TSG)
MET (7q31.2) (OG)
PTEN (10q23.31) (TSG)
HIF-1α (TSG)
HIF-2α (OG)
MTOR (OG),
PIK3CA (OG)
PBRM1 (TSG)

s.m., LOH, phm
s.m., LOH, TL.
s.m., LOH, TL, 
phm
g.m./ s.m., TL
s.m., del., TL
del., s.m.
s.m., ampl.
TL, ampl. s.m.
ampl. s.m.
s.m., del.

[56, 78–81]

Cervical 
cancer

3, 11, 17
4p16, 4q21-35

5p
6p21.3-p25

LOH
LOH

ampl.
Loss of 
Chr. parts

HPV E2 (OG)
TP53 (17p13.1) (TSG)
FHIT (3p14.2) (TSG)
RASSF1 (3p21.31) (TSG)
PIK3CA (3q26.32), (OG)
FGF12 (3q28-q29), (OG)
CDH1 (16q22.1) (TSG)
RB1 (13q14.2) (TSG)
CDKN2A (9p21.3) (TSG)
PTEN (10q23.31) (TSG)

Integration
s.m.
del.
phm
s.m., ampl.
s.m., ampl.
s.m., phm
s.m., phm
s.m., del., phm
s.m., phm

[82-89]
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tations of the most well-known 10 oncogenic 
drivers (KRAS, EGFR, ALK rearrangements, 
ERBB2, BRAF, PIK3CA, MET amplification, 
NRAS, MEK1, and AKT1) in patients of various 
racial groups were found to differ significantly 
[47]. This also indicates the population factors 
that contribute to he te ro geneity in the develop-
ment and progression of tumors.

Lung cancer is characterized by many chro-
mosomal and genomic alterations involving 
oncogenes (EGFR, MYC, RAS, PIK3CA, 
NKX2-1, ALK) and their pathways, as well as 
tumor suppressor genes (TP53, RB1, CDKN2, 
3p gene cluster) [48–52]. Among the most 
important factors in the growth and prolifera-
tion of lung tumors are the ERBB family ty-
rosine kinase receptors encoded by the epider-
mal growth factor receptor (EGFR, 7p12), 

ERBB2 (HER2/neu, 17q12), ERBB3 (12q13) 
and ERBB4 (2q33. 3) genes. It has been noted 
that EGFR protein is overexpressed in most 
lung carcinomas [49, 53–56].

Activating mutations in the EGFR tyrosine 
kinase domain predominate in the patients with 
lung cancer of East Asian ethnicity, non-smok-
ing men, and women [50, 53]. Along with 
these abnormalities, lung cancer is characte-
rized by reorganizations in the form of fusions 
of gene or their parts. For example, the EML4-
ALK gene fusion plays an important role in 
establishing the subtype of lung cancer and is 
associated with the subtypes of acinar and 
solid tumors with mucin secretion [54].

For breast cancer, deregulation of the EGFR 
pathway is associated with other pathways, 
namely PI3K/PTEN/Akt/mTORC1, which are 

Table 1d

Cancer 
localization

A B
ReferenceAltered chromosomes 

&
Type of 

alteration Gene/Function Type of gene 
alteration

Ovarian 
cancer

3, 8, 12, 14

1, 2, 3, 6, 7, 9, 12, 20

4, 8, 11, 13, 14, 15, 
17, 22

1p, 1q, 3p, 3q, 6q, 
7p, 10q, 11p, 11q, 
12q

Trisomy

ampl.

Loss Chr./ 
del.

Rearrang. 
del., 
unbalanced 
TL

EGFR (7p11.2) (OG)
ERBB2 (17q12) (OG),
KRAS (12p12.1), (OG)
MYC (8q24.21) (OG)
CDKN2A 9p21.3) (TSG)
RB1 (13q14.2) (TSG),
BRCA1 (17q21.31) (TSG)
CTNNB1 (3p22.1) (OG)
CDK12 (17q12) (OG)
FOXL2 (3q22.3) (TSG/OG)
GATA4 (8p23.1) (OG)
TP53 (17p13.1) (TSG)
CCNE1 (19q12) (OG)

ampl., s.m.
ampl., s.m.
s.m.
s.m., ampl.
s.m., del., phm
s.m., del.
g.m./ s.m.
s.m.
s.m.
s.m.
s.m., phm
del., s.m.
ampl., phom

[90–96]

Notes: A — chromosomal alterations; B — gene alterations; & — data according to https://atlasgeneticsoncology.org; 
Chr. — chromosome; OG — oncogene; TSG — tumor suppressor gene; ampl. – amplification; del. — deletion; rear-
rang. — rearrangements; TL — translocation; s.m. — somatic mutation; g.m. — germline mutation; lgcn — loss of 
gene copy number; LOH — loss of heterozigosity; phm — promoter hypermethylation; phom. — promoter hypo-
methylation; SNP — single nucleotide polymorphism
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also considered as targets for therapeutic action 
[57, 58]. These pathways are known to play a 
leading role in oncogenic transformation, 
apoptosis avoidance, metastasis, and drug re-
sistance. Gene expression of these pathways 
is disrupted in breast cancer by somatic muta-
tions and amplifications. Among them are 
HER2, ESR1, BRCA1, BRCA2, EGFR1, 
PIK3CA, PTEN, TP53, RB, which are onco-
genes and tumor suppressor genes [57–61]. 
The impact on these pathways and their genes 
is being discussed in clinical trials of new 
small molecule inhibitors [58]. For breast can-
cer, the classification system based on ge-
nomic molecular features of tumors is cur-
rently well developed [62]. It can detect basal 
and luminal subtypes of cancer. Additionally, 
a special place among breast cancers is oc-
cupied by triple-negative tumors [63], which 
are characterized by the loss of estrogen, pro-
gesterone, and HER2 receptors. They are re-
sistant to many drugs and include the follo-
wing subtypes: basal-like, mesenchymal, lu-
minal with androgen receptor expression, and 
immuno-enriched [64].

The typical molecular changes in prostate 
cancer include genetic inactivation of the 
NKX3. 1 and PTEN genes, which control epi-
thelial cell differentiation and prevent onco-
genic initiation [65, 66]. At the same time, 
among the oncogenic factors the most charac-
teristic of this type of cancer is the expression 
of long non-coding RNA PCA3, which leads 
to a suppressive effect of the suppressor gene 
PRUNE2, located on the complementary DNA 
strand [65, 67, 68]. Furthermore, prostate can-
cer is characterized by racial differences in 
genetic alterations [70] and the appearance of 
numerous oncogenic fusion transcripts [68, 71].

Colorectal cancer is characterized by the 
following genetic alterations: hereditary and 
somatic mutations, including changes caused 
by DNA repair deficiency, as well as genomic 
changes: chromosomal instability, microsatel-
lite instability, aneuploidy, chromosome loss, 
chromosomal rearrangements, loss of chromo-
some parts, deletions of 5q, 15q, 18q, 17p, 17q, 
which leads to deregulation of WNT, RTK/
Ras/MAPK, PI3K, TGF-Beta and P53 signa-
ling pathways [72, 73, 74, 75, 76, 77].

Renal, cervical and ovarian cancers also 
have certain peculiarities of genetic and epi-
genetic changes in oncogenes and tumor sup-
pressor genes. The main genetic and epige netic 
aberrations are presented in Tables 1c and 1d.

By analyzing the results of NotI-microarrays 
of human Chromosome 3 in 7 locations of 
epithelial tumors of different tissue origins, the 
authors identified 74 genes and/or loci with 
significant genetic and/or epigenetic disorders. 
Twenty of them are characteristic of 5-7 tumor 
types (tumor-specific disorders), and 23 genes 
and/or loci are tumor-specific [97]. It has been 
shown that the largest number of individual 
genetic and/or epigenetic abnormalities was 
found in prostate tumors, indicating peculiari-
ties of carcinogenesis that are different from 
other types of epithelial tumors.

The Not-I microarray identified dozens of 
genes and/or loci with genetic and/or epige-
netic abnormalities in tumor samples, indi ca-
ting the inactivation of a number of tumor 
suppressor genes and potential tumor suppres-
sor genes on the 3p and 3q arms of human 
Сhromosome 3 in epithelial tumors [56, 82, 
98]. Other methods were used to confirm the 
results. For the genes ITGA9, LRRC3B, THRB, 
RBSP3 and SEMA3B, the epigenetic inactiva-
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tion, namely methylation of gene promoters, 
was detected. The genes NKIRAS1, PPM1M, 
PRICKLE2 and GPX1 have been found with 
genetic changes in tumors — hemizygous de-
letions. For the genes GORASP1, GNAI2, 
NKIRAS1, GPX1, GPX3, PPM1M, PRICKLE2, 
SEMA3B, BHLHE40, BCL6 and ITGA9 ge-
netic and/or epigenetic alterations have cor-
related with decreased relative gene expression 
in epithelial tumors [97, 99, 100].

It is known that different types of tumors, 
as well as individual tumors, have their own 
patterns of somatic mutations [25, 101] and 
genetic aberrations, which are realized in the 
phenomenon of heterogeneity within tumors, 
between tumors and different tumor types 
[102, 103]. Among somatic mutations, there 
are so-called driver or causative mutations 
[104] and passenger mutations. They are the 
result of the carcinogenic process on the one 
hand, and on the other hand, the factors that 
enhance and deepen the aggressive properties 
of tumors [105] and occur throughout the en-
tire process of carcinogenesis [106]. It is not 
yet possible to accurately define and distin-
guish between these two types, but there are 
the approaches that have already detected a 
number of driver mutations and genes in car-
cinogenesis, most of them based on computa-
tional and interactive approaches to analyzing 
databases of genetic alterations according to 
large-scale cancer studies [107, 108].

The functions of driver genes in carcinogen-
esis are experimentally verified using many ex-
pressing systems, among which the replication-
incompetent retroviral and lentiviral expression 
systems occupy an important place [109, 110].

Genetic alterations, including deletions, am-
plifications, rearrangements, somatic mutations, 

can be caused by both exogenous (ultraviolet 
light, nicotine, carcinogens) [111, 112] and en-
dogenous factors of an organism, such as de-
amination (spontaneous and enzymatic deamina-
tion due to the action of a number of enzymes, 
in particular APOBEC proteins), oxidation, al-
kylation, replication errors [113, 114]. To restore 
DNA integrity, there are the mechanisms that can 
be inhibited and malfunction in carcinogenesis, 
namely: replicative repair, recombinant repair, 
excision repair, and mismatch repair [113].

The APOBEC (apolipoprotein B mRNA 
editing catalytic polypeptide-like) family of 
proteins has diverse and important functions 
in normal and pathological human conditions. 
These proteins have the ability to bind to both 
RNA and single-stranded DNA and have the 
enzymatic function of cytidine deamination. 
This function, as well as tissue-specific expres-
sion, varies widely for each of the APOBEC 
proteins. The loss of cellular control over the 
activity of APOBEC family proteins leads to 
DNA hypermutability and impaired RNA edi-
ting, which are closely associated with DNA 
repair defects and cancer development [115]. 
This effect is associated with the formation of 
promutagenic uracil in genomic DNA [116]. 
APOBEC enzymes have dinucleotide speci-
ficities that affect mutational characteristics. 
Although numerous crystal structures of the 
interaction of enzymes with single-stranded 
DNA have been obtained, the mechanisms of 
global recognition and local selection of target 
sequences remain unclear [117]. However, this 
does not prevent the development of small 
enzyme inhibitors for the treatment of various 
cancer types [111, 117].

Somatic mutations in malignant tumors that 
are clinically significant require a separate 
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thorough analysis. These data are presented in 
numerous databases due to the development 
and implementation of modern next-generation 
sequencing methods [8, 10, 118].

Epigenetic alterations in carcinogenesis
In contrast to genetic aberrations, epigenetic 
changes are reversible and include key pro-
cesses of genomic DNA methylation, histone 
modification, chromatin modification, changes 
in nucleosome positioning, and expression of 
non-coding RNA profiles. Disruptions in epi-
genetic processes can lead to altered gene 
functions and cause cellular neoplastic trans-
formation. The epigenetic modifications pre-
cede genetic changes and usually occur at the 
early stage of tumor development [119, 120]. 
Among the epigenetic disorders in carcinogen-
esis, the most studied processes are the above-
mentioned ones, namely, gene promoter meth-
ylation, histone acetylation and methylation, 
changes in chromatin state, and expression of 
non-coding RNAs. These aberrations are being 
studied to establish the mechanisms of tumor 
initiation, development, and metastasis, to 
identify biomarkers associated with early di-
agnosis, prognosis, and to develop effective 
cancer therapeutic agents [121].

The altered epigenetic state in cancer cells 
is characterized by global genomic hypome-
thylation as opposed to hypermethylation of 
CpG islands of tumor suppressor gene promo-
ters [122, 123]. Global genomic hypomethy-
lation provokes an increase in oncogene ex-
pression [121]. In eukaryotes, the state of DNA 
methylation is a common epigenetic change, 
and these epigenetic features are characteristic 
of heterochromatin. DNA methylation plays 
an important role in maintaining genome sta-

bility, genomic imprinting, inactivation of the 
X chromosome in women, transcriptional 
regulation, and in the development of the or-
ganism [124]. The conversion of cytosine to 
5-methylcytosine (5mC) is carried out by DNA 
methyltransferases (DNMTs). These enzymes 
use S-adenosyl methionine (SAM) as a key 
methyl group donor. There are two main ca te-
gories of DNMTs in mammalian cells, main-
tenance methyltransferase (DNMT1) and 
de novo methyltransferases (DNMT3A, 
DNMT3B) [125].

Although it is generally accepted that DNA 
methyltransferases are specific in their func-
tions and do not overlap, the recent data sug-
gest that de novo methyltransferases overlap 
with the maintenance methyltransferases [126]. 
Additionally, the methylation state depends not 
only on the activity of DNMTs, but also on the 
activity of DNA demethylase and the rate of 
DNA replication [127]. Methylation of pro-
moter CpG islands prevents the binding of 
various transcription factors to their sites and 
directly activates Methyl-CpG-binding domain 
proteins (MBD family) that bind to 5-methyl-
cytosine. MBD proteins utilize histone modi-
fying enzymes and chromatin remodeling com-
plexes in methylated regions and facilitate 
transcriptional repression [128]. The NuRD-
like chromatin remodeling complex binds to 
the MBD2 protein and methylates DNA. 
Mutations within the MBD domains occur in 
many diseases, including neurological disor-
ders and cancer, leading to a loss of specifi ci-
ty of MBD binding to methylated sites and 
gene deregulation [129]. These mechanisms 
play a central role in establishing the critical 
role of DNA methylation in the epigenetic 
regulation of gene expression.
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Among the genes with frequent genetic 
disorders in carcinogenesis (Table 1), there are 
some, which also have the changes in pro-
moter methylation status, i. e. hypo- or hyper-
methylation. In particular, RASSF1, SEMA3B 
have hypermethylated promoter regions in 
lung cancer [48, 56], PTEN, CDH1 in breast 
cancer [61], GSTP1, NKX3.1 in prostate cancer 
[68, 98], VHL in renal cancer [79], RASSF1, 
CDH1, RB1 in cervical cancer [87], CDKN2A, 
GATA4 in ovarian cancer [95, 96].

Genetic and epigenetic alterations in the 
same genes are not casual. For example, the 
associations between 737 clinically significant 
mutations in the genes involved in cancer de-
velopment (driver genes) and site-specific 
methylation changes in these genes have re-
cently been identified [130]. Furthermore, 
other researchers have studied the correlations 
between genomic DNA methylation and gene 
expression in 33 cancer types and approxi-
mately 11,000 patients according to the TCGA 
project [131, 132]. The analysis of three re-
gions of gene promoters revealed different 
patterns of methylation of their CpG islands, 
which has a multidirectional effect on the ex-
pression of the studied genes. Some of these 
data contradict the classical concept of cor-
relations between methylation and expression, 
which requires more detailed research [132].

The phenomenon of methylation of many 
suppressor genes in carcinogenesis is called 
the CpG island methylation phenotype (CIMP), 
which was first identified and most widely 
studied in colorectal cancer [133, 134]. The 
term “CIMP” has been used repeatedly in re-
cent decades to describe simultaneous me thy-
la tion of gene promoters in other tumor types, 
including bladder, cervical, stomach, liver, 

brain (glioma), lung, kidney, ovarian, and o ther 
cancers [134–139]. There is still controversy 
whether CIMP is a universal phenomenon for 
all cancers or it represents a specific phenotype 
for a particular type of cancer [135, 140, 141].

The next level of epigenetic alterations in 
carcinogenesis is a change in histone modifica-
tions: acetylation, methylation, phosphoryla-
tion, ubiquitination [142, 143], comprising the 
so-called “histone code” [144]. An octamer of 
four globular histone proteins (H2A-H2B di-
mer and H3-H4 tetramer) forms the core of the 
nucleosome, which is connected by the fifth 
linker histone H1. The free N-terminal tails of 
these proteins are very flexible and rich in 
lysine and arginine residues, they can be wide-
ly modified, which may lead to changes in the 
charge of proteins in general, loss of their 
binding to DNA [145] and changes in their 
interaction with other proteins [146]. The most 
studied modifications are acetylation and meth-
ylation of lysine residues on the N-terminal 
tails of histones and arginine methylation 
[147]. Acetylation of the lysine residue of 
histone tails is very common and their levels 
are associated with transcriptionally active 
chromatin. Acetylation inactivates the positive 
charge on histone proteins by acetylating the 
ε-amino group of lysine residues with acetyl-
transferases (HATs), which use acetyl-CoA as 
an acetyl group donor [143, 148]. The enzymes 
involved in histone modifications, such as 
histone acetylases (HATs), histone deacety-
lases (HDACs), histone methylases (HMTs), 
histone demethylases (HDMTs), and other 
epigenetically associated proteins [149, 150], 
can be deregulated in the carcinogenesis of 
various types of cancer and have genetic dis-
orders (mutations, translocations, deletions, 
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amplifications) and, as a result, the changes in 
expression in tumors [151]. The identification 
of these disorders is the basis for the develop-
ment of targeted inhibitor drugs for cancer 
treatment (epi-drugs) [150, 152–154]. Note-
worthy, a number of promising molecular tar-
gets have already been identified among small 
molecules or biological inhibitors that coun-
teract the epigenomic-metabolic interactions 
in cancer [155].

The next level of epigenetic regulation of 
carcinogenesis is represented by a large group 
of non-coding RNAs (ncRNAs), which consists 
of a number of classes that have their own struc-
ture and functions in both normal and tumor 
development, and are involved in almost all 
cellular processes in the body and intercellular 
interactions [156]. According to their main func-
tions, ncRNAs can be divided into infrastruc-
tural and regulatory. Constitutively expressed 
infrastructure ncRNAs are represented by ribo-
somal, transfer, small nuclear, and small nucle-
olar RNAs (snoeRNAs). Regulatory lncRNAs, 
in turn, are divided into classes: microRNAs, 
Piwi-interacting RNAs, circular RNAs, small 
interfering RNAs, siRNA s, and long non-coding 
RNAs. In addition, a new class of promoter-
associated RNAs (PARs) and enhancer RNAs 
(eRNAs) has recently been described [157, 158]. 
The size of ncRNAs varies from 20 nt for miR-
NAs to 9000 nt for enhancer RNAs. Initially, 
regulatory lncRNAs were thought to simply 
control gene expression at the post-transcription-
al level, but recent studies have shown that these 
RNAs, especially lncRNAs, are widely associ-
ated with various chromatin remodeling com-
plexes and target specific genomic loci to alter 
DNA methylation or histone modifications 
[159]. It has been shown that ncRNAs modulate 

intracellular signaling to control various cellular 
processes, including receptor levels and activity, 
proliferation, invasion, migration, apoptosis, and 
stemness in the development of epithelial tumors 
[160–162].

The long non-coding and micro RNAs are 
the most studied in the process of carcinoge-
nesis [163]. It is known that long non-coding 
RNAs (lncRNAs) act as competing endoge-
nous RNAs (ceRNAs), with microRNAs 
(miRNA s) and lncRNAs regulating each othe r 
through their binding sites [164]. But these are 
not the only relationships between different 
types of ncRNAs. For example, some lncRNAs 
encode miRNAs and small nuclear RNAs 
(snoRNAs) and can regulate the expression of 
these small RNAs as precursors. Small nuc lear 
RNAs, as precursors for piRNAs, can also 
regulate their expression. The miRNAs and 
piRNAs target mRNAs and regulate gene ex-
pression [165, 166]. This complex system of 
interactions, which covers all levels of function 
regulation in the cell, can manifest itself as 
both oncogenic factors and tumor suppressive 
effects [167] and serves as markers for diag-
nosis and prognosis of the disease. However, 
the functions performed by lncRNAs, as well 
as other types of ncRNAs in normal cells and 
in the development of pathologies, do not end 
there. For example, lncRNAs are involved in 
various epigenetic regulatory processes in car-
cinogenesis, including coordination of chro-
matin dynamics, regulation of DNA methyla-
tion, modulation of other ncRNAs, influence 
mRNA stability and splicing, miRNA-media-
ted regulation of gene expression, acting as a 
microRNA sponge, and control the availabi li-
ty of epigenetic substrates through impaired 
metabolism in tumors [168–170].
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It is known that altered cellular metabolism 
in tumors affects all parts of epigenetic regula-
tion, including histone modifications due to 
the availability of donor substrates (acetyl-CoA 
and SAM) for acetylation and methylation 
reactions [171]. Mutations in metabolic en-
zymes such as isocitrate dehydrogenase 1 and 
2 cause the accumulation of metabolites that 
disrupt the balance of histones and DNA me-
thylation, leading to widespread deregulation 
of epigenetically controlled expression genes. 
Moreover , modifications of the catalytic acti-
vity and subcellular localization of metabolic 
enzymes in cancer can affect epigenetic mo-
di fications and gene expression programs, 
which contributes to tumor progression [172]. 
However, on the other hand, the reversibility 
of epigenetic processes and the possibility of 
influencing them through diet [173], physical 
exercises [174], correction of chronic stress 
[175], and other factors related to the human 
lifestyle give hope for the development of 
auxiliary and preventive anti-cancer methods 
and effects. These approaches should be used 
to develop effective treatment for patients and 
to identify and implement therapeutic and 
preventive measures in the presence of risk 
factors for cancer.

Thus, the cancer cells contain multiple ge-
netic and epigenetic abnormalities. Despite the 
complexity, the cell survival and tumor pro-
gression can often be prevented by inactivating 
a single oncogene. This phenomenon is called 
“oncogenic dependence”. It provides a ratio-
nale for molecularly targeted/targeted therapy 
[176, 177]. However, combination therapy 
may also be necessary to prevent the cancer 
from becoming oncogenic [178]. It is impor-
tant to note the important role of oncogenic 

inactivation in tumor regression by the immune 
system and changes in tumor-stromal interac-
tions [179].

Reactivation of suppressor genes is another 
promising approach to stop tumor growth. To 
date, the ways of epigenetic restoration of sup-
pressor gene expression have been shown, if 
they do not have genetic disorders in the tu-
mor, such as MGMT, MLH1, and RASSF1A in 
head and neck squamous cell carcinomas 
[180], and the MLH1 gene in cell tumor lines 
[181]. The activation of suppressor genes was 
observed with the introduction of energy re-
striction agents due to the effect on the meth-
ylation of the GADD45a, GADD45b, IGFBP3, 
LAMB3, BASP1, GPX3, GSTP1 genes in pros-
tate cancer, increasing their expression [182]. 
Another approach is possible at the protein 
level, which is the inactivation of negative 
regulators of the function of suppressor genes, 
such as the inhibition of MDM2 to reactivate 
p53 in tumors [183]. Currently, there is a whole 
range of anti-cancer epigenetic drugs in vari-
ous stages of clinical trials, including histone 
deacetylase inhibitors, histone demethylases, 
DNA methyltransferase inhibitors and bromo-
domain inhibitors [184].

Modern approaches to the large-scale 
search for genetic and epigenetic 
alterations and gene expression 
aberrations in human cancers.
In recent decades, a number of technologies 
have been developed worldwide for large-scale 
screening of heterogeneous disorders of a num-
ber of human pathologies, including human 
cancers [185, 186]. These include microarray 
technologies (DNA, RNA, proteins) [187–
189], next-generation sequencing, such as 
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whole-genome, whole-transcriptome (exome, 
mRNA, ncRNA), and epigenomics [190, 191], 
microbiome studies in cancer [192, 193], and 
next-generation mass spectrometry technolo-
gies [194].

These studies make it possible to identify 
multilevel alterations in the development of 
various types of cancer and metastasis and to 
evaluate the effectiveness of treatment of pa-
tients by detecting genetic changes (microsa-
tellite instability, variations in single nucleotide 
polymorphisms and mutations, and gene copy 
variation), epigenetic changes (DNA methyla-
tion, histone modification, microRNA s), and 
differential gene expression at various stages 
of the tumor process [195, 196]. Next-
generation sequencing allows us to establish 
the “mutational fingerprints” of va rious car-
cinogens, which allows us to detect the effects 
of exogenous and endogenous genotoxic agents 
[197], and to talk about a new generation of 
genotoxic tests [198].

Large-scale genomic studies and techno-
logical innovations in next-generation se-
quencing have revealed many details of so-
matic and germline mutations in solid tumors. 
This approach makes it possible to classify 
tumor subtypes based on genetic changes in 
solid tumors, and on the basis of this informa-
tion to select new drugs and targeted therapies 
for patients and adjust standard treatment [199, 
200]. These data are used to create specific kits 
for research and clinical screening of muta-
tions, amplifications, and translocations in 
solid tumors [201–203].

In Japan and the United States, National 
Cancer Centers and university hospitals have 
introduced the new-generation of cancer diag-
nostic tests for patients using sequencing. 

Based on the identified molecular changes, 
doctors can provide an approved targeted ther-
apy and other effective drugs for cancer pa-
tients. However, the interpretation of the cli-
ni cal significance of genomic alterations re-
mains the most difficult bottleneck in evi-
dence-based medicine in cancer despite the 
availability of databases for the interpretation 
of tumor changes and clinical decisions [200, 
204, 205]. Tumor DNA profiling is now a new 
standard in the cancer research and treatment 
[206].

Although large-scale next-generation cancer 
sequencing studies hold promise for providing 
evidence-based oncology, challenges remain 
in integrating these data with clinically vali-
dated biomarkers, so it is important to create 
an integrated platform for analyzing detected 
changes at the multiomic level [207]. One of 
the important aspects, in addition to accurate 
diagnosis and prognosis of the disease course, 
which can also be analyzed using multicellular 
data [208, 209], is the establishment of sensi-
tivity to both targeted and general-acting che-
motherapeutic agents. This problem can be 
solved in a more evidence-based and compre-
hensive way not only by genomic status in 
relation to the target drug, but also at the le vel 
of multiomic studies using machine learning 
methods and determining classifiers to predict 
drug efficacy [210, 211].

For personalized medicine and the general 
public, these technologies are still quite expen-
sive, but they make it possible to identify the 
characteristics of certain tumors, molecular 
subtypes of cancer, to establish a more accurate 
diagnosis and prognosis of the disease, to va-
li date the already known ones, to discover 
potential biomarkers, drugs, targets, and to 
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develop new therapeutic approaches to cancer 
treatment [212].

Thus, the current level of development of 
science and medicine allows us to talk about 
significant achievements in identifying ge-
netic and epigenetic alterations in various types 
of cancer and understanding the molecular 
mechanisms of carcinogenesis, developing the 
latest methods of diagnosis and prognosis of 
various types of cancer and generating new 
therapeutic approaches, effective for certain 
types of tumors. Despite all these successes, 
the current task of experimental and clinical 
oncology and related sciences, such as mo-
lecular biology, genetics, cell biology and 
other s, is to ascertain the mechanisms of tumor 
growth and methods of influencing this pro-
cess, to search for genetic, epigenetic, and 
expression features of certain tumors and spe-
cific molecular driver events, tumor-stromal 
interactions, and molecular subtypes and tar-
gets for successful therapy to prevent growth 
and tumor spread as well as to develop the 
efficient methods for early diagnosis and prog-
nosis of cancer.
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Генетичні та епігенетичні порушення у раках 
людини

Г. В. Геращенко, В. І. Кашуба, М. А. Тукало

У процесі канцерогенезу клітини пухлин набувають 
певних ракових ознак, в основі яких лежать зміни на 
різних молекулярних рівнях. В даному огляді розгля-
нуто порушення у ракових клітинах на генетичному та 
епігенетичному рівнях. Генетичні порушення розгля-
нуто на прикладі семи видів раків, серед яких рак ле-
гені, молочної залози, передміхурової залози, колорек-
тальний, нирки, шийки матки та ячників. Генетичні 
зміни порушують функціонування як онкогенів, так 
і генів супресорів пухлин та спостерігаються як деле-
ції або ампліфікації, аберації хромосом та локусів хро-
мосом, тисячі соматичних мутацій у генах, поява он-
когенних гібридних транскриптів тощо. Епігенетичні 
порушення також є багатоплановими. Серед них гіпер-
метилювання та гіпометилювання промоторів генів, 
модифікації пістонів, зміна профілів експресії некоду-
вальних РНК та інші. Генетичні та епігенетичні пору-
шення мають як пухлино-специфічний характер, так 
і загальний, притаманний багатьом видам епітелійних 
пухлин. Завдяки розробці сучасних широкомасштабних 
методів детекції генетичних та епігенетичних порушень 
є змога одночасного виявлення цих порушень та моле-
кулярного профілювання різних типів раків. Багато 
з цих порушень можуть бути мішенями для діагности-
ки раку та розробки ефективних методів лікування.

К л юч ов і  с л ов а: канцерогенез, гени супресори 
росту пухлин, онкогени, делеція, ампліфікація, втрата 
гетерозиготності, соматичні та зародкові мутації, ме-
тилювання промотора, некодуючі РНК, секвенування 
нового покоління
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