
268
L. M. Kapustian, I. L. Lysetsky, T. V. Bondarchuk

©  2019 L. M. Kapustian et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Bio-
polymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited

UDC 577.217.535 + 577.322.23

Analysis of eEF1Bγ interactome in the nuclear fraction of A549 
human lung adenocarcinoma cells
L. M. Kapustian, I. L. Lysetsky, T. V. Bondarchuk, O. V. Novosylna, B. S. Negrutskii
Institute of Molecular Biology and Genetics, NAS of Ukraine 
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143  
negrutskii@imbg.org.ua

Aim. To study the translation elongation factor eEF1B gamma (eEF1Bγ) in the nucleus of 
lung carcinoma cells. Methods. The protein partners of eEF1Bγin the nuclear fraction of A549 
cells were identified by co-immunoprecipitation (co-IP) and liquid chromatography-tandem 
mass spectrometry (LC-MS/MS). The protein interaction network for nuclear eEF1Bγ was 
determined by Cytoscape 3.2.0 program using the MCODE plugin. Additional analysis of the 
eEF1Bγ partners was conducted by Map of the cell database. Results. 234 proteins interacting 
with eEF1Bγ in the nuclear fraction of A549 cells were identified. Possible functional networks 
involving these contacts were analyzed by two bioinformatic approaches. Conclusions. Splicing 
of pre-mRNA and regulation of mRNA stability are assumed to be the main processes in which 
nuclear eEF1Bγ can be involved. We hypothesize that a portion of eEF1Bγ leaves the cytoplasm-
localizede EF1B complex during carcinogenesis and enters the nucleus to regulate certain 
mRNAs by affecting the splicing of their pre-mRNA and/or stability of mRNA.
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Introduction

The high molecular weight complex of trans-
lation elongation factors, which is called 
eEF1B, provides efficient GDP/GTP exchange 
in the molecule of another translation factor, 
eEF1A [1]. eEF1A*GTP binds aminoacyl-
tRNA of any specificity and brings it to the 
pre-A site of the 80S ribosome [2, 3]. 
Hydrolysis of GTP finalizes the step of codon-
anticodon recognition permitting an aminoac-
yl-tRNA to be fully established in the A site. 

After some pause, length of which may de-
pend on tRNA specificity [4], eEF1A*GDP 
leaves the ribosome. In principle, the exchange 
of GDP for GTP in eEF1A can occur sponta-
neously as the cellular concentration of GTP 
is much higher than that of GDP. Nevertheless, 
the eEF1B complex accelerates the nucleotide 
exchange process leading to the formation of 
a new eEF1A*GTP*aminoacyl-tRNA com-
plex [5].
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eEF1B comprises eEF1Bα, eEF1Bβ and 
eEF1Bγ subunits. eEF1Bγ is the only subunit 
of eEF1B which does not catalyze nucleotide 
exchange in eEF1A. Instead, it is believed to 
serve as “glue” holding all subunits of eEF1B 
together [6]. However, the existence of free 
eEF1Bγ was detected in human cancer tissues. 
Moreover, cancer cells showed a sign of nu-
clear localization of eEF1Bγ [7, 8]. As there 
is a general belief that protein synthesis occurs 
exclusively in cytoplasm [9], the cyto-nucleo 
transfer of eEF1Bγ implies some non-transla-
tional role of the subunit. 

Here, in an attempt to clarify novel func-
tions of the eEF1Bγ subunit in cancer cells, 
we carried out bioinformatic and experimental 
analysis of the protein partners of this subunit 
in the nuclear fraction of human lung cancer 
cells A549 and envisaged non-translational 
processes and networks involving eEF1Bγ.

As a result, we propose the splicing of pre-
mRNA and regulation of mRNA stability as 
two main processes in which nuclear eEF1Bγ 
can be involved. 

Materials and Methods

Preparation of nuclear fraction of hu-
man lung cells
Human lung cancer cells A549 were grown up 
to 7.5×106 cells/ml and harvested with Trypsin-
EDTA. The nuclear fraction was isolated as in 
[10]. Briefly, cells were lysed in 1.5 volume 
of the buffer containing 10 mM HEPES pH7,9; 
1,5 mM MgCl2; 10 mM KCl; 0,5 % NP-40; 
0,2 mM PMSF; 0,5 mM DTT for 20 min on 
ice. The centrifugation was performed (400g, 
10 min) and the precipitate was resuspended 
in 4.5 volumes of the buffer (10 mM HEPES, 

0.25 mM sucrose, 1.5 mM MgCl2, 10 mM 
KCl, 0.1 % NP-40, 0.5 mM DTT, 0.2 mM 
protease inhibitor PMSF) on ice for 10 min to 
provide the protein extraction. The sucrose 
cushion (2M) centrifugation was performed at 
400g for 10 min. Nuclei were re-suspended in 
the lysis buffer and centrifuged at 1500g for 
10 min. The procedure was double-repeated. 
The nuclear pellet was re-suspended in a half 
of initial volume of the nucleus lysis buffer 
(20 mM HEPES pH 7.9, 25 % glycerol, 0.42 M 
NaCl, 1.5 mM MgCl2, 0.2 mM DTT, 0.2 mM 
EDTA, 0.2 mM PMSF), incubated on ice for 
30 min and centrifuged at 16000g for 30 min. 
The supernatant was used as a protein the 
nuclear fraction. The absence of the cytoplas-
mic fraction admixture was controlled by 
Western blot with anti-Tubulin antibodies 
(Abnova, Taiwan) [8].

Co-immunoprecipitation
The nuclear extract was pre-cleared with 
Protein G Sepharose (Sigma, USA) for 1 hour 
at 4 °C. Anti-eEF1Bγ antibodies (Abnova, 
Taiwan) (1.5 μg of antibodies per 1 mg of 
total protein) were added to pre-cleared lysate 
for overnight incubation at 4 °C. After addition 
of the Protein G Sepharose slurry the incuba-
tion persisted for 2 hours at 4 °C with con-
tinuous shaking. The eluted proteins were 
loaded on 12 % PAGE [11]. The protein bands 
of interest were cut and processed for mass-
spectrometry analysis (LC-MS/MS).

Mass-spectrometry LC-MS/MS
The nuclear extract incubated with plain 
G-Sepharose was used as a control of nonspe-
cific binding. The electrophoretic bands that 
were not present in the control or were much 
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more extensive than in the control were cut 
and processed for mass spectrometry analysis 
at the Mass Spectrometry Laboratory of the 
Institute of Biochemistry and Biophysics 
(Warsaw, Poland) as described before [12]. 

Bioinformatic analysis
Cytoscape 3.2.0 Program [13] interaction da-
tabase BIOGRID was supplemented with 
newly identified nuclear protein partners of 
eEF1Bγ and analyzed by MCODE plugin 
which finds highly interconnected regions 
(clusters) in any network loaded into 
Cytoscape. These clusters have been shown to 
represent protein complexes and/or parts of 
pathways [14]. For the sake of clarity, the 
known protein partners of eEF1Bγ: eEF1A1, 
eEF1A2 and UBC (polyubiquitin-C) were ex-
cluded from the database [12]. Also, we lim-
ited analysis by the first (direct) partners of the 
eEF1Bγ partners. MCODE analysis was per-
formed on the hybrid supercomputer “SCIT-4” 
of the Glushkov Institute of Cybernetics (GIC) 
of National Academy of Sciences of Ukraine 
(http://icybcluster.org.ua).

Analysis of the nuclear protein partners 
which are co-fractionated with eEF1Bγ was 
done using the Mapofthecell program (http://
www.mapofthecell.org). All protein partners 
of the nucleus-localized eEF1Bγ identified by 
co-precipitation studies were tested for a pos-
sibility of their co-fractionation with eEF1Bγ 
as described in [10] for eEF1Bβ. 

Results and Discussion
Having established a procedure for the cyto-
nucleo fractionation of human lung carcinoma 
A549 cells [10] we isolated the nuclear frac-
tion and conducted co-immunoprecipitation of 

the eEF1Bγ protein partners using anti-eEF1Bγ 
antibodies. Subsequent LC-MS/MS identifica-
tion of precipitated proteins has delivered 234 
interacting partners of eEF1Bγ.

These partners were used for further analy-
sis by the Cytoscape program as described 
before [15]. Based on published data the 
Cytoscape protein interaction network of 
eEF1Bγ encompassed 11 proteins (including 
eEF1Bγ) [15]. 

The novel protein interaction network was 
generated by MCODE after complementing 
the BioGrid database with newly identified 234 
nuclear partners of eEF1Bγ in A549 cells 
(Fig. 1). The resulting network contained 47 
proteins (including eEF1Bγ). Several func-
tional clusters comprising both experimen-
tally defined and predicted by MCODE part-
ners were observed. Cluster A comprised dif-
ferent polypeptides of polymerase (RNA)II 
(DNA directed) (POLR2B, POLR2C, 
POLR2D, POLR2G, POLR2E, POLR2J) in-
volved in the transcription process. Importantly, 
direct interaction of eEF1Bγ with POLR2C 
was shown earlier [16] which presents inde-
pendent evidence for eEF1Bγ contacts with 
the polymerase (RNA)II (DNA directed) com-
plex. Cluster B included proteins ABCF1, 
EIF2B3, NMT1, EIF2B2, MRE11A, RFC4 and 
NELFB that are mainly involved in translation, 
transcription and DNA replication/reparation 
processes, Cluster C (TNFRSF10B, 
TNRFSF1A, FAS, FASLG, FADD, CASP10, 
CASP8, BID, MAPK8, RHOA, ARHGDIA, 
MSN, EZR) represented the membrane-related 
proteins involved in apoptosis, cell regulation 
and cytoskeleton-membrane interaction, 
Cluster D (PPP2CB , CTTNBP2NL, STRN4, 
PDCD10) comprised the proteins involved in 

http://icybcluster.org.ua
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cell regulation, and Cluster E (eEF1Bβ, eI-
F4A3, eIF3M, PABPC1, SYNCRIP, HNRNPD, 
HNRNPH1, SNRNP20, MED23, SF3B1, 
SNRPA1, HNRNPH2, , SRSF1, TADA2A, tat, 
gag-pol) included the proteins involved in 
translation, mRNA splicing, metabolism and 
transport, transcription activation as well as 
two proteins related to HIV-1 infection.

A complementary approach to identify the 
cellular processes potentially involving 

eEF1Bγ is to combine our eEF1Bγ co-immu-
noprecipitation data with the proteomic data 
derived from precise co-fractionation of the 
cellular proteins with eEF1Bγ, with subsequent 
analysis of the functions of the proteins com-
mon for both data sets. Precise co-fractionation 
is considered an alternative way to estimate a 
possibility of protein-protein interaction in 
cell [17]. Recently we used this approach to 
identify the proteins co-fractionated with the 

Fig.1. Protein network containing 
eEF1Bγ, generated by MCODE in 
the Cytoscape 3.2.0 Program from 
Human BioGRID database supple-
mented with co-IP/MS-MS experi-
mental data.
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eEF1Bβ subunit of eEF1B in human cancer 
cells [10]. For this aim the Mapofthecell data-
base of the subcellular localization of the pro-
teins in cancer human cells was employed [17].

Here we utilized the same approach to find 
out the proteins of the nuclear fraction of human 
cancer cells, co-fractionated with the eEF1Bγ 
subunit. To do this we used the whole list of 
234 protein partners of eEF1Bγ identified by 
Co-IP and MS in the nuclear fraction to check 
a possibility of their co-fractionation with 
eEF1Bγ according to the Mapofthecell database. 
Indeed, nine protein partners were found to co-
localize with eEF1Bγ during precise co-frac-
tionation (Fig. 2). All these proteins showed 
mixed cyto-nuclear localization according to 
the Subcellular localization database 
COMPARTMENTS (https://compartments.jen-
senlab.org) which is consistent with their pres-

ence in the nuclear fraction of A549 cells. 
Interestingly, two groups of the eEF1Bγ partners 
separated by fractionation were observed on the 
map (Fig. 2). ELAVL1, TIA1, CD2AP, PCBP2 
and DAZAP1 represented Group 1, while 
SERBP1, YTHDC2, YTHDF2 and GIGYF2 
represented Group 2. Peculiarly, all but one 
proteins possessed RNA-binding proper ties.

Interestingly, these proteins showed quite 
different abundancy in human cancer cells 
[17]. The copy number of the eEF1Bγ esti-
mated as number of molecules per cell 
(11 587 782) was comparable with the amount 
of the PCBP2, SERBP1 and FLAVL1 proteins. 
The copy number of YTHDF2 and DAZAP1 
was 15-fold, CD2AP and TIA1 about 40-fold, 
GIGYF2–64-fold and YTHDC2–141-fold 
lower that the amount of the eEF1Bγ mole-
cules per cell. 

Fig.2. The experimentally defined partners of nuclear eEF1Bγ (EEF1G) selected by “Mapofthecell” co-fractionation 
approach. Map 2 of “Mapofthecell” database was used.

https://compartments.jensenlab.org
https://compartments.jensenlab.org
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The characteristics of the eEF1Bγ partners 
are given below.

Protein PCBP2 (Poly(rC) binding pro-
tein 2) is a splicing factor [18], it participates 
in signal transduction pathways [19]. PCBP2 
is a negative regulator of IRES-mediated 
mRNA translation [20]. PCBP2 is a well-
known iron chaperon [21], it participates in 
regulation of antioxidant defence [22]. It is 
involved in apoptosis [23] and innate immune 
response systems [24,25].

PCBP2 is linked to the cancer development, 
in particular, it is overexpressed in pancreatic 
ductal adenocarcinoma [26], glioma [27], he-
patocellular carcinoma [28]. It exemplifies 
pro-viral activity [29,30].

CD2AP (CD2 associated protein) is known 
actin/cytoskeletal regulator controlling actin 
organization and cellular migration [31]. It 
interacts with actin capping protein, directs it 
to different subcellular locations and modu-
lates its activity via allosteric effects [32]. It 
regulates exosome cargo protein trafficking 
through the Golgi complex [33]. 

Mice with CD2AP deficiency showed such 
signs of glomerular disease as effacement and 
disorganization of the slit diaphragm, signifi-
cant membrane dynamics and disrupted podo-
cyte and endothelial integrity [34]. CD2AP 
participates in spermatogenesis [35]. This pro-
tein could be an important factor for 
Alzheimer’s disease development [36]. In par-
ticular, it controls Aβ generation in dendritic 
early endosomes [37]. Also, CD2AP exempli-
fies pro-viral activity, for instance it binds 
unstructured subunits of Chikungunya virus 
replicase [38] and stimulates chronic hepatitis 
C virus propagation and steatosis by disrupting 
insulin signaling [39]. 

TIA1 (T cell intracellular antigen-1) is pri-
on-related RNA-binding protein [40]. During 
arsenic stress inducing global shortening of 
3’UTRs, TIA1 preferentially interacts with 
shorter 3’UTR sequences through U-rich mo-
tifs, correlating with stress granule association 
and mRNA decay of long 3’UTR isoforms 
[41]. TIA1 protein essentially contributes to 
the fidelity of mRNA maturation, translation, 
and RNA-stress-sensing pathways in human 
cells [42]. TIA1 is a key component of stress 
granules which is regulated by Zn2+ ions [43]. 
DNA damage due to mitogens activation pro-
motes mRNA relocation and translation in part 
due to dissociation of Tia1 from its mRNA 
targets [44].

TIA1 promotes cancer progression in dif-
ferent tissues [45–48]. It involved in tau-me-
diated neurodegeneration [49,50]. TIA1 is 
linked to Amyotrophic Lateral Sclerosis [51] 
and Welander distal myopathy [52]. TIA1 ex-
emplifies pro-viral activity [53].

Interestingly, both CD2AP and TIA1 are 
involved in HIPPO signaling system [54,55].

ELAVL1 (ELAV-like protein 1) which is 
also called HuR (human antigen R), is an 
RNA-binding protein involved in differentia-
tion and stress response that acts primarily by 
stabilizing mRNA targets [56–58]. It binds 
3’-untranslated region of BECN1/Beclin1 
mRNA regulating ferroptosis , recently recog-
nized form of controlled cell death that is 
characterized by lipid peroxidation, in liver 
fibrosis [59]. Its binding to PARG mRNA 
positively affects DNA repair and increases 
resistance to PARP inhibitors [60]. HuR/
ELAVL1 binding to SCN5A mRNA increases 
its stability, with subsequent reduction of ar-
rhythmic risk in heart failure [61]. HuR/
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ELAVL1 is involved in telomerase function, 
as it associates with TERC and promotes the 
assembly of the TERC/TERT complex by fa-
cilitating TERC C106 methylation [62]. It 
participates in spermatogenesis [63].

There are a number of reports, which link 
pro-tumor activity of HuR/ELAVL1 with can-
cer of different localizations [64–68]. 
Surprisingly, HuR/ELAVL1 binding to differ-
ent long non-coding RNAs induces opposite 
effect on the proliferation of different tumor 
cells [69,70].

HuR/ELAVL1 demonstrates pro-viral acti-
vity [71]. This protein is linked to Parkinson’s 
disease [72]. Disruption of ELAVL1/HuR 
nuclear export is consistent with the effects of 
inborn errors of vitamin B12 (cobalamin) me-
tabolisms on brain development, neuroplasti-
city and myelin formation [73].

DAZAP1 (DAZ-associated protein 1) is an 
RNA-binding protein involved in mammalian 
development and spermatogenesis [74]. 
Knockdown or over-expression of DAZAP1 
causes a cell proliferation defect while phos-
phorylation of its C-terminal domain which is 
sufficient to activate splicing is essential for 
the nuclear/cytoplasmic translocation of 
DAZAP1 [75]. DAZAP1 affects splicing of 
pre-mRNA [76]. It can regulate translation of 
mRNA as well [77].

SERBP1 (Serpine1 mRNA Binding 
Protein 1) binds different protein partners 
which participate in different cellular process-
es. For instance, it interacts with signaling 
protein RACK1 involved to signal transduc-
tion, mRNA splicing and translation and the 
cytoskeleton [78]. It interacts with SPIN1, a 
maternal protein containing Tudor-like do-
mains, which is involved in regulating maternal 

transcripts to control meiotic resumption by 
controlling mRNA stability and/or translation 
[79]. One of the inhibitory mechanisms in this 
case is the occupation of the ribosomal mRNA 
entrance channel [80]. It binds dimers of acti-
vation-induced cytidine deaminase (AID) 
which may contribute to DNA-cleavage and 
recombination [81]. SERBP1 also affects DNA 
repair [82]. It is involved in transcriptional 
complex [83]. During stress SERBP1 is dis-
tributed simultaneously to cytoplasmic stress 
granules and nucleoli, two ribonucleoprotein-
enriched subcellular compartments [84]. Cyto-
nuclear distribution can be regulated by meth-
ylation of its arginine residues [85].

SERBP1 was markedly upregulated in pros-
tate cancer tissues and was significantly as-
sociated with tissue metastasis and Gleason 
score. The loss of miR-26a-5p promotes pro-
liferation, migration, and invasion through 
targeting SERBP1 [86].

GIGYF2 (GRB10 Interacting GYF 
Protein 2) is a specific RNA-binding protein 
linked to repression of translation. It shows at 
least two distinct mechanisms of repression: 
one depends on 4EHP binding and mainly af-
fects translation; the other is 4EHP-independent 
and involves the CCR4/NOT complex and its 
deadenylation activity [87]. Protein GIGYF2 
is also a regulator of miRNA-mediated trans-
lation repression [88]. GIGYF2 is an autoph-
agy regulator controlling neuron and muscle 
homeostasis [89] which is possibly involved 
in the regulation of signaling at endo-
somes [90]. It is also involved in mammalian 
development [91].

GIGYF2 mutations may be associated with 
increased risk of Parkinson’s disease [92, 93] 
and macrocephaly [94]. Increased expression 
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of GIGYF2 might contribute to the develop-
ment of diabetes-associated cognitive disorder 
via negatively regulating IGF1R signaling 
pathway [95].

YTHDC2 (YTH Domain Containing 2) 
protein is a N6-methyladenosine (m6A) read-
er that specifically recognizes and binds mod-
ified nucleotides in RNA. YTHDC2 enhances 
the translation efficiency of its targets and also 
decreases their mRNA abundance [96]. 
Recently it was shown that YTHDC2 interacts 
with the small ribosomal subunit in close prox-
imity to the mRNA entry/exit sites and controls 
specific mRNAs by recruitment of the RNA 
degradation machinery to regulate the stabil-
ity of m6A-containing mRNAs and by utilizing 
its distinct RNA-binding domains to bridge 
interactions between m6A-containing mRNAs 
and the ribosomes to facilitate their efficient 
translation [97]. Regulation of gene expression 
by YTHDC2 is considered an evolutionarily 
ancient strategy for controlling the germline 
transition into meiosis [98, 99]. YTHDC2 is 
found to regulate mammalian spermatogene-
sis [96]. YTHDC2 promotes cancer metasta-
sis [100].

YTHDF2 (YTH N6-Methyladenosine RNA 
Binding Protein 2) is another m6A reader 
which reduces the stability of target transcripts 
[101]. Due to this, YTHDF2 plays a role in 
maternal-to-zygotic transition during the early 
life of embryos [102, 103]. YTHDF2 may 
recognize and bind the m6 A site of FAM134B 
that plays a pivotal role in lipid homeostasis 
to reduce its mRNA lifetime and reduce its 
protein abundance [104]. It binds to the peroxi-
some proliferator-activated receptor α to medi-
ate its mRNA stability to regulate lipid me-
tabolism [105]. It recognized and decayed 

methylated mRNAs of Cyclin-A2 and kinase 
CDK2, thereby prolonging cell cycle progres-
sion and suppressing adipogenesis [106]. 
YTHDF2 plays an important role in regulating 
hematopoietic stem cells ex vivo expansion by 
regulating the stability of multiple mRNAs 
critical for HSC self-renewal of these 
cells [107]. Ythdf2 modulates neural develop-
ment by promoting m6A-dependent degrada-
tion of neural development-related mRNA 
target [108]. YTHDF2 is mainly present in the 
cytosol, however, nearly all YTHDF2 translo-
cated from the cytosol into the nucleus after 
heat shock [109].

YTHDF2 is a negative regulator of inter-
feron response as it facilitates the fast turnover 
of interferon mRNAs and consequently helps 
viral propagation [110]. YTHDF2 plays posi-
tive roles in viral gene expression and HIV-1 
particle assembly, suggesting that HIV-1 inter-
acts with mRNA decay components to suc-
cessfully accomplish viral replication [111, 
112]. Overexpression of YTHDF2 induces 
more rapid viral replication, and larger viral 
plaques, in SV40 infected BSC40 cells [113].

YTHDF2 directly binds the m6A modifica-
tion site of EGFR 3’-UTR to promote the 
degradation of EGFR mRNA in HCC cells 
acting as a tumor suppressor to repress cancer 
cell proliferation and growth [114,115].

The information is summarized in Table 1.
Supplementation of the bioinformatic 

Cytoscape approach with the experimental 
pull-down data permitted to pinpoint a number 
of different cellular processes potentially in-
volving eEF1Bγ in nucleus. Among those 
could be the main molecular biological pro-
cesses: replication/reparation, transcription and 
translation. According to Cytoscape, eEF1Bγ 
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may take part in apoptosis, cell regulation and 
cytoskeleton-membrane interaction, including 
exosomal trafficking. Use of the Mapofthecell 
database relying on precise cellular sub-frac-
tionation, provided a basis for narrowing the 
wide functional variety of potential functions 
of eEF1Bγ expected from a number of its cel-
lular partners in nuclear fraction. Consequently, 
we analyzed the functions of the experimen-
tally proved eEF1Bγ partners which were pre-
dicted by both Cytoscape and Mapofthecell 
approaches. We reasoned that the coincidence 
of the functions of the eEF1Bγ partners iden-
tified by different approaches increases the 

probability of eEF1Bγ involvement in fulfill-
ment of this function. 

Peculiarly, two functions based on the 
mRNA-binding properties of the proteins were 
markedly represented in both datasets. The first 
one is the splicing of mRNA presented by 
HNRNPH1, HNRNPD, SNRNP20, MED23, 
SF3B1 (Cytoscape) and PCBP2, DAZAP1 
(MapoftheCell). Fig. 3 shows a possibility that 
HNRNPD, DAZAP1 and eEF1Bγ on one side 
and HNRNPH1, SNRNP20, MED23, SF3B1 
and PCBP2 on another side can be involved 
in different entities in the cell so, the interac-
tion of eEF1Bγ with the second formation can 

Table 1. The Co-IP/MS identified protein partners, which were co-fractionated with eEF1Bγ.

№ Gene names Protein names Copy  
number/cell

RNA-binding 
ability

Localization
Relation to diseases 

Cyto Nucl
1 PCBP2 Poly(RC) Binding 

Protein 2 
13, 998,300 + ++++ ++++ Pro-tumor activity, pro-

viral activity
2 CD2AP CD2 Associated Protein 276,039 ++++ ++++ glomerular disease, 

Alzheimer’s disease, pro-
viral activity

3 TIA1 Cytotoxic Granule 
Associated RNA 
Binding Protein

282,879 + ++++ ++++ Pro-tumor activity, 
Alzheimer’s disease, 
Amyotrophic Lateral 
Sclerosis, Welander Distal 
Myopathy 

4 ELAVL1 
(HUR) 53

ELAV Like RNA 
Binding Protein 1

3,678,805 + ++++ ++++ Pro-tumor activity, pro-
viral activity, Parkinson’s 
Disease, Inherited 
disorders of cobalamin 
metabolism

5 DAZAP1
48

DAZ Associated 
Protein 1

778,860 + ++++ ++++ azoospermia

6 SERBP1 SERPINE1 mRNA 
Binding Protein 1

9,859,640 + ++++ ++++ Pro-tumor activity

7 YTHDC2 YTH Domain 
Containing 2

82,311 + +++ +++ Pro-tumor activity

8 GIGYF2 GRB10 Interacting 
GYF Protein 2

180,458 + ++++ +++ Macrocephaly, Parkinson 
disease 

9 YTHDF2 N6-Methyladenosine 
RNA Binding Protein 2

723,343 + ++++ ++++ tumor suppressor,
pro-viral activity
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be dynamic rather than stable. Thus, nucleus-
localized eEF1Bγ can be involved in splicing 
events. Importantly, the experimental pro-
teomic data have suggested that eEF1Bγ could 
be a member of pre-mRNA 3’ processing com-
plex [116].

The second function is the regulation of 
stability of mRNA which involves HNRNPD, 
HNRNPH1 (Cytoscape) and GIGYF2, 
YTHDC2, YTHDF2, TIA1, ELAVL1 
(MapoftheCell). Mapofthecell of these partners 
shows that HNRNPH1does not seem to belong 
to the stable complex (Fig. 4) which cannot 
exclude, however, the existence of the dy-
namic interaction between HNRNPH1 and 
other members of the entity. One may suggest 
that eEF1Bγ can be bound to different mRNAs 
in nucleus contributing to their stability and 
transport. Notably, eEF1Bγ has been described 
to bind the 3’ UTRs of vimentin [117] and 
some other mRNA [16].

Another function of eEF1Bγ partners iden-
tified by both approaches is related to cyto-
skeleton-membrane link and cellular traffick-
ing. The group comprises EZR and HNRNPH1 
(Cytoscape) and CD2AP (MapoftheCell). It is 
widely accepted that ezrin participates in an-
choring membrane proteins to the cortical 
actin network [118]. Nuclear localization of 
ezrin was also reported, however, the role of 
nuclear ezrin is not yet deciphered [119]. 
HNRNPH1 and CD2AP participate in exosome 
trafficking [33,120]. It is worthy to mention 
that a role of eEF1Bγ in organelle transport 
has been shown [16,121]. eEF1Bγ was also 
co-immunoprecipitated with an essential com-
ponent of ER-Golgi transport vesicles [122]. 
Also, it is known that eEF1Bγ interacts with 
cytoskeleton [123] and membranes [124]. All 

these facts permit to suggest that eEF1Bγ, 
along with its partners, may contribute to the 
cytoskeleton-membrane interaction and per-
form a transport role.

Importantly, the majority of described pro-
tein partners of eEF1Bγ in the nuclear fraction 
are strongly linked to cancer. Cancer-related 
functions of PCBP2, TIA-1, HuR/ELAVL1, 
SERBP1, YTHDC2, YTHDF2 (Mapofthecell 
database) were described above. All experi-
mentally defined partners of eEF1Bγ picked 
up by Cytoscape to build molecular networks, 
are linked to cancer as well [2,125–132]. 
Based on these data one may suggest that 
eEF1Bγ is also associated with cancer and 
may play a central hub role to link together 
various cancer-related processes. There are a 
few experimental facts indicating such a pos-
sibility [7,8,133]. One may suggest that trans-
lation function of eEF1Bγ is linked to its in-
volvement to eEF1B complex, while the in-
duced by cancer appearance of free eEF1Bγ 
has regulatory consequences relying on its 
ability to influence pre-mRNA splicing and 
mRNAs stability. Subsequently, eEF1Bγ could 
be a novel perspective target for molecular 
therapy of cancer.

Another function of eEF1Bγ and its partners 
can be associated with viral propagation. 
Interestingly, 55 % of the eEF1Bγ partners 
picked up by Mapofthecell and 37 % of the 
eEF1Bγ partners picked up by Cytoscape 
showed pro- or anti-viral activity. Peculiarly, 
eEF1Bγ by itself is involved in viral infection 
and propagation [134–136].

Interestingly, no indication of the nuclear 
eEF1Bγ partners link to retinoblastoma was 
found, contrary to what was observed for cy-
toplasmic eEF1Bγ [15]. In contrast, a number 
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Fig.3. Protein partners of nuclear eEF1Bγ involved in splicing of pre-mRNA. Experimentally defined partners of 
eEF1Bγ (depicted in blue) predicted by Cytoscape (in red) and Mapofthecell (in green). Numbers show different 
groups of the partners described in the text. Map 3 of “Mapofthecell” database was used.

Fig. 4. Protein partners of nuclear eEF1Bγ involved in regulation of mRNA stability. Experimentally defined partners 
of eEF1Bγ (depicted in blue) predicted by Cytoscape (in red) and Mapofthecell (in green). Map 3 of “Mapofthecell” 
database was used.
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of eEF1Bγ partners in the nuclear fraction 
were shown to be related to neurodegenerative 
disorders (Alzheimer’s disease, Parkinson’s 
disease, epilepsy, intellectual disability) so, 
possible involvement of nuclear eEF1Bγ in 
genesis of these diseases should be elucidated 
in future studies.

Conclusions
234 proteins were identified by co-immuno-
precipitation and LC-MS-MS as interacting 
with eEF1Bγ in the nuclear fraction of lung 
cancer cells A549. Possible functional net-
works involving eEF1Bγ and its partners were 
built with the use of the Cytoscape 3.2.0 pro-
gram. The networks were related to the DNA 
replication/reparation, transcription, transla-
tion, cell regulation and cytoskeleton-mem-
brane interaction, mRNA splicing and intracel-
lular transportation processes. Additional 
analysis with Mapofthecell engine based on 
precise protein co-fractionation, permitted to 
pinpoint two main processes in which nuclear 
eEF1Bγ may be involved. They are splicing 
of mRNA and regulation of mRNA stability. 
According to our data, eEF1Bγ may also take 
part in cytoskeleton-membrane linking and 
cellular trafficking. 
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Аналіз інтерактому eEF1Bγ в ядерній фракції 
клітин аденокарциноми легені людини A549

Л. М. Капустян, І. Л. Лисецький, Т. В. Бондарчук, 
О. В. Новосильна, Б. С. Негруцький

Мета. Виявити нові функції фактора елонгації тран-
сляції eEF1Bgamma (eEF1Bγ) в ядерній фракції клі-
тин карциноми легені людини А549. Методи. Білки-
партнери eEF1Bγ у ядерній фракції клітин аденокар-
циноми легені людини А549 були ідентифіковані за 
допомогою ко-іммунопреципітації із наступною рі-
динною хроматографією та тандемною мас-
спектрометрією (LC-MS/MS). Білкові мережі, до яких 
входить локалізований у ядрі білок eEF1Bγ, визна-
чали за допомогою програми Cytoscape 3.2.0 із пла-
гіном MCODE. Додатковий аналіз партнерів ядерно-
го eEF1Bγ проводили за допомогою бази даних 
Mapofthecell. Результати. Ідентифіковано 234 білки, 
що взаємодіють із eEF1Bγ в ядерній фракції клітин 
А549. Мережі білок-білкових взаємодій, до яких за-
лучені ці білки, були проаналізовані за допомогою 
двох біоінформатичних підходів. Висновки. 
Висунуто передбачення, що сплайсинг пре-мРНК та 
регуляція стабільності мРНК можуть бути основни-
ми процесами, у яких бере участь ядерно локалізо-
ваний eEF1Bγ. Під час карциногенезу частина моле-
кул eEF1Bγ залишає локалізований у цитоплазмі 
комплекс eEF1B і переходить до ядра, де регулює 
кількість специфічних мРНК через контроль сплай-
сингу відповідних пре-мРНК та вплив на стабіль-
ність мРНК.

К л юч ов і  с л ов а: eEF1Bγ, білок-білкові взаємодії, 
ядро, клітини А549.

Анализ интерактома eEF1Bγ в ядерной фракции 
клеток аденокарциноми легкого человека A549 

Л. М. Капустян, И. Л. Лисецкий, Т. В. Бондарчук, 
А. В. Новосильная, Б. С. Негруцкий

Цель. Выявить новые функции фактора элонгации 
трансляции eEF1Bγ в ядерной фракции клеток карци-
номы легкого человека А549. Методы. Белки-партнеры 
eEF1Bγ в ядерной фракции клеток аденокарциномы 
легкого человека А549 были идентифицированы с по-
мощью ко-иммуно пре ци пи тации с последующей жид-
костной хроматографией и тандемной масс-спектроме-
трией (LC-MS/MS). Белковые сети, в составкоторых 
входит локализованный в ядре eEF1Bγ, определяли с 
помощью программы Cytoscape 3.2.0 с пла-гином 
MCODE. Дополнительный анализ партнеров ядерного 
eEF1Bγ проводили, используя базу данных Mapofthecell. 
Результаты. Идентифицированы 234 белка, которые 
взаимодействуют с eEF1Bγ в ядернойфракции клеток 
А549. Сети белок-белковых взаимо-действий, в каких 
участвуют данные белки, были проанализированы с 
помощью двух биоинформатических подходов. 
Выводы. Выдвинуто предположение, что сплайсинг 
пре-мРНК и регуляция стабильности зрелой мРНК 
могут быть основними процесами, в которых участвует 
локализованный в ядре eEF1Bγ. Во время карциноге-
неза, некоторая часть молекул eEF1Bγ оставляет лока-
лизованный в цитоплазме комплекс eEF1B и переходит 
в ядро, где регулирует количество специфических мРНК 
посредством контроля сплай-синга соответствующих 
пре-мРНК и влияния на их стабильность.

К л юч е в ы е  с л ов а: eEF1Bγ, белок-белковые вза-
имодействия, ядро, клетки А549.
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