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Proteasomes mediate functional realization of signaling proteins implicated in asthma pathogenesis. Aim. To

evaluate main and sex-specific association between the PSMA6, PSMC6 and PSMA3 proteasomal genes varia-

tions and childhood asthma in Latvians and Taiwanese. Methods. SNPs rs2277460, rs1048990, rs2295826,

rs2295827 and rs2348071 were genotyped in 102 Latvian and 159 Taiwanese cases for comparison with ge-

netic diversity in populations (191 and 1097 subjects respectively). Results. Haplotype CGACG showed strong
(P < 0.0001) association with asthma risk in both populations. All loci heterozygous genotypes and haplotype

CCGTA were identified as asthma risk factors in Latvians; rs1048990 and rs2348071 GG homozygotes and
152295826 and rs2295827 heterozygotes showed asthma risk and protective effect in Taiwanese females respec-
tively. The multi locus genotypes homozygous for alleles being common in Latvian population were identified as
protective in Latvians and disease susceptible in Taiwanese. Conclusions. Our results suggest an association of
the 14q13-23 proteasomal genes polymorphisms with the childhood asthma in Latvians and Taiwanese and high-
light risk and/or protective factors being the same or different between the populations.

Keywords: chromosome 14q13-23, SNPs, PSMA6, PSMC6, PSMA3, childhood asthma.

Introduction. Asthma is a chronic inflammatory disea-
se caused by complex gene—gene and gene—environ-
ment interactions with hyper-responsiveness to various
nonspecific stimuli [1-3] being to a large extent geneti-
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cally heterogeneous between human populations [4]. A
number of genes implicated in asthma encode various
signaling proteins and transcription factors including
those driven by NF-kB signaling pathways [5-7].
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However, interplay of multiple risk alleles and/or
genotypes and primary driver of the disease remains still
unclear.

In eukaryotes, processing and degradation of vast
majority of regulatory proteins are mediated by ubiqui-
tin-proteasome system (UPS). Proteasomes, key UPS
enzymatic complex possess several types of peptidase,
endoribonuclease, protein-chaperone and DNA-helica-
se activities [8—10] allowing strict control and coordina-
tion of all steps of gene expression, genes and proteins
networks and processes of genome—environment inter-
action. Insufficient proteasome function was implica-
ted in pathophysiology of various acute and chronic
lung diseases and their complications [11-14] and po-
tentially could be a consequence of particular proteaso-
mal genes structural variations.

Multiple studies including several GWAS analy-
ses, indicated the 14q11-24 genome region as suscep-
tible to asthma [15-21]. This genomic region possesses
a cluster of proteasomal genes including the PSMAG,
PSMC6 and PSMA3 genes implicated previously in sus-
ceptibility to autoimmunity [22-24], type 2 diabetes mel-
litus [25, 26], cardio-vascular disorders [27] and popu-
lation adaptation to environment [28]. It appears that
there is a large potential for the 14q proteasomal genes
association studies to provide novel insights into the
bronchial asthma (BA) pathogenesis in particular human
populations and in general.

Aim of the current study was to genotype five sin-
gle nucleotide polymorphisms (SNPs) belonging to
the PSMAG6 (rs2277460 and rs1048990), PSMA3
(rs2348071), and PSMC6 (rs2295826 and rs2295827)
proteasomal genes and evaluate main and sex-specific
association between variations of these genes and asth-
ma in Latvians and Taiwanese.

Materials and methods. One hundred two child-
ren (28 girls) aged under five and 159 (69 girls) aged un-
der three represented Latvian (LV) and Taiwanese (TW)
asthma groups respectively. LV BA patients were en-
rolled from the outpatient clinic of P. Stradins Clinical
University Hospital and Children Clinical University
Hospital «Gailezers» in Riga, Latvia.

TW study subjects were enrolled from elementary
school for allergy diseases screen Taoyuan General
Hospital, Taiwan. All patients were diagnosed with
mild or moderate persistent asthma according to the
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guidelines of the Global Initiative for Asthma (GINA;
http://www.ginasthma.org/local/uploads/files/GINA _
Under5 Pocket 20091 1.pdf). The studies were ap-
proved by the Central Medical Ethics Commission of
the Republic of Latvia Ministry of Health and Ethics
Committee of Taoyuan General Hospital, Taiwan. In-
formed consent was obtained from parents of study
participants.

Latvian and Taiwanese control groups of 191 (age =
=54.8+18.6; 117 women) and 1097 (aged under five;
558 girls) participants respectively, were described and
genetic diversity of SNPs of interest was studied pre-
viously [28] providing primary genotyping data to be
used in current study to evaluate asthma main effects
for each particular SNP, construct multi locus genoty-
pes and stratify controls by sex to reveal asthma sex spe-
cific associations in single- and multi-locus models.

DNA extraction and genotyping technologies were
the same as in [28].

For quality control, of the 16 randomly chosen sam-
ples per each marker were genotyped in duplicate in
different experiments for asthma samples from both
Latvian and Taiwanese collections. The concordance
of the genotyping was 100 %. The chromosome 14
GRCh37.p5 assembly (NCBI reference sequence: NC
000014.8) sequence information was used for loci
description.

Personalised genotyping data documentation resul-
ted in knowledge of 5 locus genotype (5-LG: rs2277460/
rs1048990/1rs2295826/rs2295827/rs2348071) of each in-
dividual participant of the study. The 5-LGs, single locus
genotypes (SLGs) and alleles frequencies were estima-
ted by direct gene counting. DnaSP version 5 (http://
www.ub.es/dnasp/ [29] was used to reconstruct the hap-
lotypes from un-phased genotypes, evaluate the nucleo-
tide and haplotype genetic diversity and pairwise linka-
ge disequilibrium (LD) between the loci (D' and r*). Both
the two-tailed Fisher's exact test and the * test were ap-
plied to evaluate the linkage between the 152295826 and
1s2295827 polymorphic sites at three p-value levels (p <
0.05; p<0.01; p<0.001). The Bonferroni correction in-
cluded in DnaSP analysis was taken into account to sup-
port the significance of the revealed disequilibrium (o' =
=0.05).

Deviation from the Hardy-Weinberg equilibrium
and differences between case and control groups in al-
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lele, genotype and haplotype frequencies as well as per-
mutation test (Monte Carlo method/number of simula-
tions = 10000) were evaluated by % using XLSTAT
2013 software for Windows. Dominant, recessive, over
dominant and multiplicative genetic models for every
individual locus were designed according to Lewis [30]
and analysed by using 2 x 2 contingency tables. Odds
ratio (OR) more than 2 and less than 0.5 was considered
to be clinically significant. Stratification was perfor-
med by sex.

Results and discussion. In both Latvian and Taiwa-
nese sample collections the genotyping call rate was
100 % for all markers; alleles and genotypes fre-
quencies are given in Tables 1 and 2. The rs2348071
being in Latvian patients in HWE, significantly (P <
0.001) deviated from equilibrium in Taiwanese. Other
markers were found to be in HWE in both LV and TW
patients. The rs2295826 and rs2295827 were observed
in complete (D'= 1, r* = 1) and slightly disrupted (D'= 1,
r’=0.896) LD in Latvians and Taiwanese respectively.

The distributions of alleles and genotypes in case
groups were compared with those previously identified
in the populations [28] and the data on single-locus as-
sociation are summarized in Table 1 and Table 2. In Lat-
vians all five loci showed the asthma main effect for ra-
re alleles and heterozygous genotypes. The rs1048990
was associated with the disease in both females and ma-
les. The asthma susceptibility of resting loci was charac-
terized by nonadditivity; that was, the rs2277460 and
rs2348071 were associated with asthma in females, and
the rs2295826 and rs2295827 were associated with as-
thma in males. In Taiwanese, the rs2277460 appears to
be asthma neutral and resting loci showed the disease
susceptibility only in females. The asthma risk effect
was observed for the rs1048990 and rs2348071 GG ge-
notypes and rs2348071 allele G. Rare alleles and hete-
rozygous genotypes of the rs2295826 and rs2295827
showed female-specific asthma protective effect.

The multi-locus genotypes showing asthma risk or
protective effect in any of our populations are listed in
Table 3 (see suppl.). In Latvians a statistically signifi-
cant protective effect was observed for all variants of
multi locus genotypes being homozygous for the alleles
common in the population. The 5SLG of CC/CC/AA/CC/
GG configuration being protective in Latvians (OR =
=0.32210.196 — 0.651]), showed the asthma risk effect

in Taiwanese females (OR =2.911 [1.327-6.387]). Si-
milarly, being protective in Latvians the AA/CC/GG
(rs2295826/rs2295827/rs2348071) genotype appears to
be the disease susceptible in Taiwanese. In Latvians, the
risk effect was observed for the 1s2277460/rs2348071,
rs1048990/rs2348071, 1s1048990/rs2295826/rs2295827
and rs2295826/rs2295827/rs2348071 genotypes being
simultaneously heterozygous at all loci involved. All
mentioned genotypes were neutral in Taiwanese. In
contrast, the rs2295826/rs2295827/rs2348071 genoty-
pe of AG/CT/AA configuration being neutral in Latvi-
ans, showed the protective effect in Taiwanese females.

The data of haplotype analysis are given in Table 4
(see suppl.). Haplotype diversity was higher in Latvian
patients than in the population and did not differ bet-
ween the cases and population in Taiwanese. The most
frequent in Latvians the Hapl (CCACG) showed male
specific asthma protective (OR =0.633 [0.416—-0.963])
effect in this population. The Hap6 (CGACG) showed
strong (P < 0.0001) association with the asthma risk in
both Latvians (OR =4.525 [2.286-8.958]) and Taiwa-
nese (OR =2.448 [1.763-3.399]) for both females and
males. Minor in both populations and Taiwanese cases
the Hap9 (CCGTA) was strongly (P < 0.0001) associa-
ted with the asthma phenotype in Latvians.

Identification of the genetic risk factors for asthma
is complicated by potential interaction of genes and me-
tabolic pathways, genotype with sex and environment;
most of the reported asthma genes were not replicated
across populations [4, 31]. The 14q11-24 chromosomal
region is one of well replicated asthma susceptibility lo-
ci [15-21]; the PSMA6, PSMA3 and PSMC6 proteaso-
mal genes located in the region were implicated earlier
in susceptibility to autoimmunity [22-24], inflamma-
tion [25-27] and historical and geographical adaptation
[28].

In this paper we provide for the first time the evi-
dence that polymorphism in the PSMA6, PSMC6, and
PSMA3 proteasomal genes may contribute to the risk of
childhood asthma in both Latvian and Taiwanese popu-
lations. The most remarkable finding of our study is
that haplotype CGACG was revealed to be a strong (P <
0.0001) asthma risk factor in both Latvians and Taiwa-
nese. Other identified asthma risk and protective sing-
le- and multi-locus genetic variants are different bet-
ween two populations. The difference between human

379



PARAMONOVA N. ET AL.

Table 1

SNP allele and genotype distribution and data on association with paediatric asthma in Latvian population

Distribution of alleles and genotypes, n (%)

Marker
Allele or BA patients Controls*
genotype Total (n = 102) Females (n = 28) Males (1 = 74) Total (n = 191) Females (n = 117) Males (1 = 74)
152277460
C 176 (86.27) 47 (83.93) 129 (87.16) 357 (93.46) 232 (94.87) 135 (91.22)
A 28 (13.73) 9 (16.07) 19 (12.84) 25 (6.54) 12 (5.13) 13 (8.78)
cc 74 (72.55) 19 (67.86) 55 (74.32) 166 (86.91) 105 (89.74) 61 (82.43)
CA 28 (27.45) 9 (32.14) 19 (25.68) 25 (13.09) 12 (10.26) 13 (17.57)
rs1048990
C 165 (80.88) 44 (78.57) 121 (81.76) 348 (91.10) 211 (90.17) 137 (92.57)
G 39 (19.12) 12 (21.43) 27 (18.24) 34 (8.90) 23 (9.83) 11(7.43)
cc 65 (63.73) 16 (57.14) 49 (66.22) 158 (82.72) 95 (81.20) 63 (85.14)
CG 35 (34.31) 12 (42.86) 23 (31.08) 32 (16.75) 21 (17.95) 11 (14.86)
GG 2(1.96) - 2(2.70) 1(0.52) 1(0.85) -
152295826
A 166 (81.37) 47 (83.93) 119 (80.41) 342 (89.53) 204 (87.18) 138 (93.24)
G 38 (18.63) 9 (16.07) 29 (19.59) 40 (10.47) 30 (12.82) 10 (6.76)
AA 66 (64.71) 19 (67.86) 47 (63.51) 155 (81.15) 90 (76.93) 65 (87.84)
AG 34 (33.33) 9 (32.14) 25 (33.78) 32 (16.75) 24 (20.51) 8 (10.81)
GG 2(1.96) - 2(2.70) 4(2.09) 3(2.56) 1(1.35)
rs2295827
C 166 (81.37) 47 (83.93) 119 (80.41) 342 (89.53) 204 (87.18) 138 (93.24)
T 38 (18.63) 9 (16.07) 29 (19.59) 40 (10.47) 30 (12.82) 10 (6.76)
cc 66 (64.71) 19 (67.86) 47 (63.51) 155 (81.15) 90 (76.93) 65 (87.84)
CT 34 (33.33) 9 (32.14) 25 (33.78) 32 (16.75) 24 (20.51) 8 (10.81)
TT 2(1.96) - 2(2.70) 4(2.09) 3(2.56) 1(1.35)
rs2348071
G 119 (58.33) 34 (60.71) 85 (57.43) 270 (70.68) 170 (72.65) 100 (67.57)
A 85 (41.67) 22(39.29) 63 (42.57) 112 (29.32) 64 (27.35) 48 (32.43)
GG 35 (34.31) 8 (28.57) 27 (36.49) 102 (53.40) 65 (55.55) 37 (50.00)
GA 49 (48.04) 18 (64.29) 31 (41.89) 66 (34.56) 40 (34.19) 26 (35.14)
AA 18 (17.65) 2(7.14) 16 (21.62) 23 (12.04) 12 (10.26) 11 (14.86)

*Data on an allele and genotype presentation in control group are given according to Sjakste et al. [24, 28]; P - probability calculated by ¥’ test;
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Marker ID Statistics
Allele or Genetic model Group P(P) OR [95 % CI]
genotype
152277460
C AvsC Total 0.0038 (0.0045) 2.272[1.293-3.933]
A - Females 0.0032 (0.0059) 3.702 [1.506-9.101]
cc CA vs CC Total 0.0023 (0.0029) 2.512 [1.379-4.578]
CA - Females 0.0031 (0.0066) 4.145 [1.568-10.957]
rs1048990
C GvsC Total 0.0004 (0.0006) 2.419 [1.478-3.960]
G - Females 0.0167 (0.0238) 2.502 [1.157-5.342]
- Male 0.0054 (0.0085) 2.779 [1.339-5.768]
cc CG vs Total 0.0007 (0.0011) 2.596 [1.491-4.519]
CG CC + GG Females 0.0047 (0.0077) 3.429 [1.435-8.192]
GG - Male 0.0190 (0.0308) 2.583 [1.166-5.722]
152295826
A Gvs A Total 0.0056 (0.0064) 1.957 [1.213-3.158]
G - Male 0.0011 (0.0022) 3.363 [1.596-7.088]
AA AG vs Total 0.0012 (0.0016) 2.484 [1.424-4.334]
AG AA + GG Male 0.0008 (0.0008) 4.209 [1.783-9.937]
GG - - - -
152295827
C Gvs A Total 0.0056 (0.0064) 1.957 [1.213-3.158]
T - Male 0.0011 (0.0022) 3.363 [1.596-7.088]
cc AG vs Total 0.0012 (0.0016) 2.484 [1.424-4.334]
CT AA + GG Male 0.0008 (0.0008) 4.209 [1.783-9.937]
TT - - - -
152348071
G AvsG Total 0.0026 (0.0039) 1.722 [1.208-2.454]
A _ _ _ _
GG GA vs Total 0.0244 (0.0343) 1.751 [1.075-2.851]
GA GG + AA Females 0.0035 (0.0059) 3.465 [1.485-8.085]
AA - - - -

P_— corrected probability calculated by Monte Carlo method with 10000 simulations.
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Table 2

SNP allele and genotype distribution and data on association with paediatric asthma in Taiwanese population

Marker

Distribution of alleles and genotypes, n (%)

Allele or BA patients Controls*
genotype Total (n = 159) Females (n = 69) Males (1 = 90) Total (n = 1097) Females (n = 558) Males (1 = 539)
1s2277460
C 315 (99.06) 137 (99.28) 179 (99.44) 1081 (99.27) 547 (99.01) 534 (99.54)
A 2(0.63) 1(0.72) 1(0.56) 16 (0.73) 11 (0.99) 5(0.46)
cc 157 (98.74) 68 (98.55) 89 (98.89) 1081 (98.54) 547 (98.03) 534(99.07)
CA 2(1.26) 1(1.45) 1(1.11) 16 (1.46) 11(1.97) 5(0.93)
rs1048990
¢ 209 (65.72) 85 (61.59) 124 (68.89) 1480 (67.46) 738 (66.13) 742 (68.83)
G 109 (34.28) 53 (38.41) 56 (31.11) 714 (32.54) 378 (33.87) 336 (31.17)
cc 66 (41.51) 28 (40.58) 38 (42.22) 462 (42.12) 228 (40.86) 234 (43.42)
CG 77 (48.43) 29 (42.03) 48 (53.33) 556 (50.68) 282 (50.54) 274 (50.83)
GG 16 (10.06) 12 (17.39) 4 (4.44) 79 (7.20) 48 (8.60) 31 (5.75)
152295826
A 286 (89.94) 129 (93.48) 157 (87.22) 1855 (84.55) 948 (84.95) 907 (84.14)
G 32 (10.06) 9 (6.52) 23 (12.78) 339 (15.45) 168 (15.05) 171 (15.86)
AA 129 (81.13) 60 (86.96) 69 (76.67) 778 (70.92) 404 (72.40) 374 (69.39)
AG 28 (17.61) 9 (13.04) 19 (21.11) 299 (27.26) 140 (25.08) 159 (29.05)
GG 2 (1.26) - 2(2.22) 20 (1.82) 14 (2.51) 6(1.11)
152295827
C 289 (90.88) 129 (93.48) 160 (88.89) 1872 (85.32) 962 (86.20) 910 (84.42)
T 29 (9.12) 9 (6.52) 20 (11.11) 322 (14.68) 154 (13.80) 168 (15.58)
cc 130 (81.76) 60 (86.96) 70 (77.78) 775 (70.64) 404 (72.40) 371 (68.83)
CT 29 (18.24) 9 (13.04) 20 (22.22) 322 (29.35) 154 (27.60) 168 (31.17)
TT - - - - - -
152348071
G 126 (39.62) 61 (44.20) 65 (36.11) 759 (34.59) 380 (34.05) 379 (35.16)
A 192 (60.38) 77 (55.80) 115 (63.89) 1435 (65.41) 736 (65.95) 699 (64.84)
GG 40 (25.16) 19 (27.54) 21(23.33) 204 (18.60) 97 (17.39) 107 (19.85)
GA 46 (28.93) 23(33.33) 23 (25.56) 351 (31.99) 186 (33.33) 165 (30.61)
AA 73 (45.91) 27(39.13) 46 (51.11) 542 (49.41) 275 (49.28) 267 (49.54)

*Data on an allele and genotype presentation in control group are given according to Sjakste et al. [28]; P — probability calculated by %’ test;

382




PSMA6/PSMC6/PSMA3 POLYMORPHISM AND CHILDHOOD ASTHMA

Statistics
Marker ID

Allele or
genotype

Genetic model Group

P(P)

OR [95 % CI]

1s2277460
C _ —

A _ _
CcC - -
CA - -

1rs1048990
C _ _

G _ _

CC GG vs Females

CG CC+CG -
GG - -

rs2295826

A Gvs A Total

G - Females

AA AG vs Total

AG AA + GG Females

GG - -

rs2295827

C TvsC Total

T - Females
CcC CT vs CC Total
CT - Females
TT - -

1rs2348071
G Cuvs A Females
A _ _
GG GG vs Females
GA GA + AA -

AA - -

0.0192 (0.0311)

0.0114 (0.0117)
0.0066 (0.0094)
0.0094 (0.0091)

0.0266 (0.0346)

0.0076 (0.0099)
0.0165 (0.0215)
0.0023 (0.0024)

0.0093 (0.0117)

0.0185 (0.0228)

0.0404 (0.0315)

2.237[1.135-4.410]

0.612[0.418-0.896]
0.394 [0.200-0.776]
0.570 [0.372-0.873]

0.488 [0.220-0.911]

0.583[0.392-0.868]
0.436 [0.221-0.861]
0.523 [0.344-0.796]

0.394 [0.194-0.799]

1.534 [1.74-2.192]

1.806 [1.025-3.182]

P_— corrected probability calculated by Monte Carlo method with 10000 simulation.
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populations in asthma genetics is a well-known pheno-
menon described for a number of asthma susceptible
loci having mainly ethnos specific differences in gene-
tic diversity [4]. The Latvian and Taiwanese popula-
tions significantly differ in genetic diversity of loci stu-
died here [28]. This suggests involvement of these loci
in the processes of evolutional and/or geographical
adaptation to environment and a potential for allele
substitutions to have different ethnic specific influence
on the human health and population morbidity [28].

Several associations revealed in our study showed
non-additivity between sexes. In Latvians the rs2277460
and rs2348071 were associated with asthma in females,
and the rs2295826 and rs2295827 were disease suscep-
tible in males; in Taiwanese all asthma susceptible loci
were limited to females. Sex specific differences in inci-
dence, prevalence, and severity are also well known fea-
tures of asthma epidemiology. Sex-specific associations
with the disease have been recently reported for SNPs
of several genes-candidates including the /FNG [31],
IL17F [32], TSLP [33], VDR [34], and KCNBI [35]
genes. Our analysis of the BA main effect in Latvian
population is a subject to some limitation as sexes were
not equally presented in both BA and control groups.
Although a significant asthma main effect was detected
for all five loci studied, only the rs1048990 showed an
additive effect that was an association in both females
and males. The replication study in additional larger co-
horts represented by sexes equally is required to valida-
te the results found in the current study for Latvian po-
pulation.

Due to the pleiotropic effect, a frequent phenome-
non in human complex traits and diseases [36], some lo-
ci of susceptibility may be shared among many autoim-
mune and other immune-mediated diseases [37, 38].
Earlier the genetic pleiotropic effect has been reported
for asthma and obesity [39, 40] and for asthma and ju-
venile rheumatoid arthritis [41, 42]. Similarly, SNPs as-
sociated with asthma in our current study, previously
have been found to be susceptible in Latvians to other
immune-mediated pathologies including juvenile idio-
pathic arthritis [24, 43], children obesity [44] and mul-
tiple sclerosis [45]. The rs1048990 was widely genoty-
ped in many human populations and reported as an eth-
nic specific risk factor for inflammation within the car-
dio-vascular system [27, 28].
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All loci we have studied here belong to the non-co-
ding regions of corresponding genes and nucleotide
substitutions potentially may influence the gene expres-
sion through allele specific targeting of different regu-
latory elements. Among the allele-specific targets de-
scribed by Sjakste with co-authors earlier [24, 28], se-
veral sites showed affinity to transcription factors and
splicing signals implicated previously in immunity, lung
function and lung pathology. The targeting of these re-
gulatory proteins may influence asthma pathogenesis
and needs to be mentioned in respect of current study.
The rs2277460 ancestral allele C, the major allele in hu-
man populations over the world, appears to be functional-
ly neutral. Substitution to A generates a target to hnRNP
A1, a multifunctional protein implicated in the associa-
tion with multiple promoter sequences and modulation
of a number of transcriptional events [46]. The hnRNP
A1 has been shown to play a key role in many human
pathologies including lung cancer and response to viral
pathogens [46, 47]. It may influence protein-protein in-
teractions including those with participation of NF-xB
[46] playing in turn a significant role in the asthma de-
velopment and progression [5—7]. Additionally, it is in-
volved in crosstalk with ubiquitin proteasome system
at different levels of NF-«B and other regulatory pro-
teins signaling pathways [48]. Allele A also assists to
sequence affinity to the BARBIE box proteins found to
be involved in inflammatory response of alveolar mac-
rophages [49]. Substitution C — G at the rs1048990
was shown to influence the gene expression in vivo and
in vitro [27, 50] and significantly change the sequence
capacity to bind a number of splicing signals and
transcription factors [28]. Rare allele G generates bind-
ing sites for the multifunctional proteins of p53 and
DMRT families implicated in the processes of climatic
[51] and evolutional [52] adaptation. The targeting of
these proteins potentially could be involved in the
mechanisms of natural selection and ethnos specific
susceptibility to inflammation [27, 28].

Common allele A of the rs2295826 (first intron of
the PSMC6 gene) generates the targets for the mentio-
ned above hnRNP A1l regulatory protein and for the
transcription factor of CREB family involved in trans-
criptional control of many pro-inflammatory genes [53,
54] and implicated in asthma pathogenesis [55], asthma
phenotypes and response to therapy [56].
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The rs2348071 SNP strongly discriminates Latvi-
ans having a major allele G (about 70 %) and Taiwane-
se having a major ancestral allele A (about 70 %). Pre-
viously we have suggested [28] that transition A —> G
happened in Caucasians about 15,000 years ago was
supported by positive selection. This mutation elimina-
tes potential targets for hnRNP A1 and the transcription
factors of CART family shown to be an essential parti-
cipant of signaling respiratory network [57] and the
MEF?2 family implicated in transcriptional switch bet-
ween metabolism and immunity [58].

Summarizing mentioned results we suggest that the
nucleotide substitutions we have studied may signifi-
cantly modulate the transcription of related genes and
gene network in response to the inflammation and other
environmental stimuli and influence the asthma sus-
ceptibility.

Conclusions. Our findings provide an evidence that
single- and multi locus variations in the 14q13-23 PSMA6/
PSMC6/PSMA3 proteasomal genes cluster are associa-
ted with childhood asthma in Latvian and Taiwanese
populations and could play an important role in asthma
and other immune-mediated pathologies in both Cauca-
sians and Asians, as either the risk or protective ethnic-
and sex-specific genetic factors.

Identification of genetic variants susceptible to asth-
ma and other immune-mediated pathologies, both com-
mon and different across populations, is important in
understanding pathogenesis and phenotype variability
of these multifactorial diseases. It might be a subject of
thorough investigation in the nearest future.
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T'eneruuni Bapiantu renis PSMA6, PSMC6 i PSMA3, acouiiioBaHi
3 OpPOHXIAJIEHOIO aCTMOIO y JITeH JIATBIMCHKOI 1 TallBaHBCHKOT

IOy IS

H. IMTapamownoga, JI. C.-C. By, 1. Pymba-Pozendenze, x.-5. Baur,
H. Ceskcre, T. Chsxcre

Pestome

Ilpomeacomu onocepedxogyions peanizayiio yHKYill CUSHATbHUX
6InKi8, 3a1yueHux 0o namozenesy oponxianvroi acmmu. Mema. Oyi-
HUMU 3a2anbHy I 3a1ex4CHy 610 cmami acoyiayiio sapiayitl npomeacom-
Hux eenie PSMA6, PSMCG6 i PSMA3 3 6pouxianvrHoo acmmoro y Oi-
meii i3 Jlamsii' i Tatieana. Memoou. Oononykneomuoni noaimopeis-

mu rs2277460, rs1048990, rs2295826, rs2295827 i rs2348071 eeno-
munosano y 102 xeopux 3 Jlameii' i 159 — 3 Taueana. /{na nopieuanus
8351M0 KOHMPONbHI epynu, AKI NPeoCmagisaioms 2eHemuyne pisHoma-
unimms @ nonynayiax: 191 nameivcoxux i 1097 matieanvbcoKrux 3pasKis.
Pesynomamu. 'annomun CGACG sussuecs micro (P < 0.0001) aco-
YITlOBAHUM 3 PUSUKOM PO3GUMKY acmmu 6 000X nonyaayisax. I emepo-
sueomHi eenomunu 3a ecima nokycamu i eansomun CCGTA ioenmudpi-
KOBAHO AIK (hakmop pusuxy 05 pO36UMKY dcmmu y scumenie Jlamaii.
Tomoszucomu GG no rs1048990 i rs234807 1 nos ’sazami 3 pusuxkom, a 2e-
mepo3suecomu no rs2295826 i rs2295827 nposaenaiomsv 3axucHuu
eexm 3-nomisic maneanvcobKux Jucinok. bazamonokycui ecenomunu, 2o-
MO3U20MHI 3a po3n0BCIOOdceHuMY 6 JIamaii anensimu, UAGUAUC 3d-
XucHumMuU 01 Heumenie Jlamsii, ane nos si3anumu 3 pusUKoM 3ax80pro-
sanns ceped maieanvyie. Bucnosku. Hawi pesynomamu 6xazyioms
Ha acoyiayito noaimopghizmie npomeacomuux eeHie 1okycy 14q13-23 3
OPOHXIANLHOIW0 acmMot ceped dimell y 1ameIlicbKill I Mat8aHbCbKIl
NONYIAYIAX, acoyiayis modice Oymu nog s3and K 3 PUsUKOM 3axX60pIio-
BAHHS, MAK I 3 3AXUCHUM eheKmOoM. 3a 0anoIo 03HAK0I0 NONYAAYIi MO-
AHCYMb PIZHUMUCS AO0 He PIZHUMUCS.

Kniouosi cnosa: xpomocoma 14q13-23, o0nonyxieomuomi nonimop-
Qizmu, PSMA6, PSMC6, PSMA3, 6pouxiansna acmma y oimeil.

I'enetnyeckue Bapuantel reHoB PSMA6, PSMC6 n PSMA3,
ACCOI[MMPOBAHHbBIC C OPOHXNUAIBLHOW aCTMOM y JIeTeil B JTaTBUIICKOI

U TallBaHbCKOM MOIYJISIUSIX

H. Tlapamonosga, JI. C.-C. By, U. Pym6a-Po3zendenne, [Ix.-5. Banr,
H. Cosixcte, T. Chskcte

Pesrome

IIpomeacombl onocpedyiom pearuzayuio GyHKYull CUSHATLHLIX Oe-
K08, 6061€YeHNbIX 6 namozenes oponxuanvhou acmmol. Lens. Oyenums
00WYI0 U 3A8UCUMYIO OM NONA ACCOYUAYUIO BAPUAYUTL NPOMEACOMHBIX
2enoe PSMAG6, PSMC6 u PSMA3 ¢ 6ponxuanshoi acmmou y Oemeti u3
Jlameuu u Tatieans. Memoowvt. OOHOHYKICOMUOHbIE NOTUMOPPUIMbL
rs2277460, rs1048990, rs2295826, rs2295827 u rs2348071 cenomu-
nupoganwvl y 102 6onvnvix uz Jlameuu u 159 — u3 Taiieans. [na cpagne-
HUS 6351Mbl KOHMPOILHBIE 2PYRNbL, NPEOCMABIAIOUUE 2eHEMUYeCcKoe
pasnoobpasue 6 nonyasyusx: 191 nameuvickux u 1097 maiisanscrkux
obpasyos. Pesynomameor. 'annomun CGACG okazancs mecro (P <
0.0001) accoyuupo8aHubiM ¢ pUCKOM PA3BUMUSL ACMMbL 8 00eux nony-
aayusx. 'emeposucomuvie 2eHOMuUNbL N0 6CeM JOKYCAM U 2aniomun
CCGTA uoenmughuyuposarsl Kax paxmop pucka 0Jis pazeumusi acm-
Mot y orcumenett Jlameuu. I'omoszucomor GG no rs1048990 urs2348071
C6A3anbl ¢ pUCKOM, a 2emepo3ucomul no rs2295826 urs2295827 npo-
AGNAIOM 3aWUMHbLLL dPhexm cpedu mausanbckux srcenupun. Muoeo-
JIOKYCHblEe 2eHOMUNbL, 20MO3ULOMHbIE NO PACNPOCMPAHeHHbIM 6 Jlam-
BUU ANLTETAM, OKA3ANUCH 3AUUMHBIMU 015 dcumenell Jlameuu, Ho c6s1-
3AHHBIMU C PUCKOM 3a001e8anus cpedu matieanvyes. Boteoowvr. Hawu
Pe3yibmamol YKazuleaion Ha accoyuayuio noaumMop@Ousmos npomea-
comubix 2enos nokyca 14q13-23 ¢ bponxuanrvHoil acmmoii cpedu de-
metl 6 1aMBULICKOU U MAUBAHbCKOU NONYIAYUAX, ACCOYUAYUSL MOJICEM
ObIMb CBA3AHA KAK € PUCKOM 3a001€8aHUA, MAK U C 3AUUMHBIM -
Gexmom. Ilo oannomy npusnaxy nonyaayuu Mo2ym omiudamscs uiu
He OMAUYamuesi.

Kntouesvie cnosa: xpomocoma 14q13-23, oononyxkieomuonvle nonu-
mopusmot, PSMA6, PSMC6, PSMA3, 6ponxuanvras acmma y demeil.
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