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Proteasomes mediate functional realization of signaling proteins implicated in asthma pathogenesis. Aim. To

evaluate main and sex-specific association between the PSMA6, PSMC6 and PSMA3 proteasomal genes varia-

tions and childhood asthma in Latvians and Taiwanese. Methods. SNPs rs2277460, rs1048990, rs2295826,

rs2295827 and rs2348071 were genotyped in 102 Latvian and 159 Taiwanese cases for comparison with ge-

netic diversity in populations (191 and 1097 subjects respectively). Results. Haplotype CGACG showed strong

(P < 0.0001) association with asthma risk in both populations. All loci heterozygous genotypes and haplotype

CCGTA were identified as asthma risk factors in Latvians; rs1048990 and rs2348071 GG homozygotes and

rs2295826 and rs2295827 heterozygotes showed asthma risk and protective effect in Taiwanese females respec-

tively. The multi locus genotypes homozygous for alleles being common in Latvian population were identified as

protective in Latvians and disease susceptible in Taiwanese. Conclusions. Our results suggest an association of

the 14q13-23 proteasomal genes polymorphisms with the childhood asthma in Latvians and Taiwanese and high-

light risk and/or protective factors being the same or different between the populations.

Keywords: chromosome 14q13-23, SNPs, PSMA6, PSMC6, PSMA3, childhood asthma.

Introduction. Asthma is a chronic inflammatory disea-

se caused by complex gene–gene and gene–environ-

ment interactions with hyper-responsiveness to various

nonspecific stimuli [1–3] being to a large extent geneti-

cally heterogeneous between human populations [4]. A

number of genes implicated in asthma encode various

signaling proteins and transcription factors including

those driven by NF-�B signaling pathways [5–7].
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However, interplay of multiple risk alleles and/or

genotypes and primary driver of the disease remains still

unclear.

In eukaryotes, processing and degradation of vast

majority of regulatory proteins are mediated by ubiqui-

tin-proteasome system (UPS). Proteasomes, key UPS

enzymatic complex possess several types of peptidase,

endoribonuclease, protein-chaperone and DNA-helica-

se activities [8–10] allowing strict control and coordina-

tion of all steps of gene expression, genes and proteins

networks and processes of genome–environment inter-

action. Insufficient proteasome function was implica-

ted in pathophysiology of various acute and chronic

lung diseases and their complications [11–14] and po-

tentially could be a consequence of particular proteaso-

mal genes structural variations.

Multiple studies including several GWAS analy-

ses, indicated the 14q11-24 genome region as suscep-

tible to asthma [15–21]. This genomic region possesses

a cluster of proteasomal genes including the PSMA6,

PSMC6 and PSMA3 genes implicated previously in sus-

ceptibility to autoimmunity [22–24], type 2 diabetes mel-

litus [25, 26], cardio-vascular disorders [27] and popu-

lation adaptation to environment [28]. It appears that

there is a large potential for the 14q proteasomal genes

association studies to provide novel insights into the

bronchial asthma (BA) pathogenesis in particular human

populations and in general.

Aim of the current study was to genotype five sin-

gle nucleotide polymorphisms (SNPs) belonging to

the PSMA6 (rs2277460 and rs1048990), PSMA3

(rs2348071), and PSMC6 (rs2295826 and rs2295827)

proteasomal genes and evaluate main and sex-specific

association between variations of these genes and asth-

ma in Latvians and Taiwanese.

Materials and methods. One hundred two child-

ren (28 girls) aged under five and 159 (69 girls) aged un-

der three represented Latvian (LV) and Taiwanese (TW)

asthma groups respectively. LV BA patients were en-

rolled from the outpatient clinic of P. Stradins Clinical

University Hospital and Children Clinical University

Hospital «Gailezers» in Riga, Latvia.

TW study subjects were enrolled from elementary

school for allergy diseases screen Taoyuan General

Hospital, Taiwan. All patients were diagnosed with

mild or moderate persistent asthma according to the

guidelines of the Global Initiative for Asthma (GINA;

http://www.ginasthma.org/local/uploads/files/GINA_

Under5_Pocket_20091_1.pdf). The studies were ap-

proved by the Central Medical Ethics Commission of

the Republic of Latvia Ministry of Health and Ethics

Committee of Taoyuan General Hospital, Taiwan. In-

formed consent was obtained from parents of study

participants.

Latvian and Taiwanese control groups of 191 (age =

= 54.8 ± 18.6; 117 women) and 1097 (aged under five;

558 girls) participants respectively, were described and

genetic diversity of SNPs of interest was studied pre-

viously [28] providing primary genotyping data to be

used in current study to evaluate asthma main effects

for each particular SNP, construct multi locus genoty-

pes and stratify controls by sex to reveal asthma sex spe-

cific associations in single- and multi-locus models.

DNA extraction and genotyping technologies were

the same as in [28].

For quality control, of the 16 randomly chosen sam-

ples per each marker were genotyped in duplicate in

different experiments for asthma samples from both

Latvian and Taiwanese collections. The concordance

of the genotyping was 100 %. The chromosome 14

GRCh37.p5 assembly (NCBI reference sequence: NC_

000014.8) sequence information was used for loci

description.

Personalised genotyping data documentation resul-

ted in knowledge of 5 locus genotype (5-LG: rs2277460/

rs1048990/rs2295826/rs2295827/rs2348071) of each in-

dividual participant of the study. The 5-LGs, single locus

genotypes (SLGs) and alleles frequencies were estima-

ted by direct gene counting. DnaSP version 5 (http://

www.ub.es/dnasp/ [29] was used to reconstruct the hap-

lotypes from un-phased genotypes, evaluate the nucleo-

tide and haplotype genetic diversity and pairwise linka-

ge disequilibrium (LD) between the loci (D' and r
2). Both

the two-tailed Fisher's exact test and the �
2 test were ap-

plied to evaluate the linkage between the rs2295826 and

rs2295827 polymorphic sites at three p-value levels (p <

0.05; p < 0.01; p < 0.001). The Bonferroni correction in-

cluded in DnaSP analysis was taken into account to sup-

port the significance of the revealed disequilibrium (�' =

= 0.05).

Deviation from the Hardy-Weinberg equilibrium

and differences between case and control groups in al-
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lele, genotype and haplotype frequencies as well as per-

mutation test (Monte Carlo method/number of simula-

tions = 10000) were evaluated by �
2 using XLSTAT

2013 software for Windows. Dominant, recessive, over

dominant and multiplicative genetic models for every

individual locus were designed according to Lewis [30]

and analysed by using 2 � 2 contingency tables. Odds

ratio (OR) more than 2 and less than 0.5 was considered

to be clinically significant. Stratification was perfor-

med by sex.

Results and discussion. In both Latvian and Taiwa-

nese sample collections the genotyping call rate was

100 % for all markers; alleles and genotypes fre-

quencies are given in Tables 1 and 2. The rs2348071

being in Latvian patients in HWE, significantly (P <

0.001) deviated from equilibrium in Taiwanese. Other

markers were found to be in HWE in both LV and TW

patients. The rs2295826 and rs2295827 were observed

in complete (D' = 1, r2 = 1) and slightly disrupted (D' = 1,

r2 = 0.896) LD in Latvians and Taiwanese respectively.

The distributions of alleles and genotypes in case

groups were compared with those previously identified

in the populations [28] and the data on single-locus as-

sociation are summarized in Table 1 and Table 2. In Lat-

vians all five loci showed the asthma main effect for ra-

re alleles and heterozygous genotypes. The rs1048990

was associated with the disease in both females and ma-

les. The asthma susceptibility of resting loci was charac-

terized by nonadditivity; that was, the rs2277460 and

rs2348071 were associated with asthma in females, and

the rs2295826 and rs2295827 were associated with as-

thma in males. In Taiwanese, the rs2277460 appears to

be asthma neutral and resting loci showed the disease

susceptibility only in females. The asthma risk effect

was observed for the rs1048990 and rs2348071 GG ge-

notypes and rs2348071 allele G. Rare alleles and hete-

rozygous genotypes of the rs2295826 and rs2295827

showed female-specific asthma protective effect.

The multi-locus genotypes showing asthma risk or

protective effect in any of our populations are listed in

Table 3 (see suppl.). In Latvians a statistically signifi-

cant protective effect was observed for all variants of

multi locus genotypes being homozygous for the alleles

common in the population. The 5LG of CC/CC/AA/CC/

GG configuration being protective in Latvians (OR =

= 0.322 [0.196 – 0.651]), showed the asthma risk effect

in Taiwanese females (OR = 2.911 [1.327–6.387]). Si-

milarly, being protective in Latvians the AA/CC/GG

(rs2295826/rs2295827/rs2348071) genotype appears to

be the disease susceptible in Taiwanese. In Latvians, the

risk effect was observed for the rs2277460/rs2348071,

rs1048990/rs2348071, rs1048990/rs2295826/rs2295827

and rs2295826/rs2295827/rs2348071 genotypes being

simultaneously heterozygous at all loci involved. All

mentioned genotypes were neutral in Taiwanese. In

contrast, the rs2295826/rs2295827/rs2348071 genoty-

pe of AG/CT/AA configuration being neutral in Latvi-

ans, showed the protective effect in Taiwanese females.

The data of haplotype analysis are given in Table 4

(see suppl.). Haplotype diversity was higher in Latvian

patients than in the population and did not differ bet-

ween the cases and population in Taiwanese. The most

frequent in Latvians the Hap1 (CCACG) showed male

specific asthma protective (OR = 0.633 [0.416–0.963])

effect in this population. The Hap6 (CGACG) showed

strong (P < 0.0001) association with the asthma risk in

both Latvians (OR = 4.525 [2.286–8.958]) and Taiwa-

nese (OR = 2.448 [1.763–3.399]) for both females and

males. Minor in both populations and Taiwanese cases

the Hap9 (CCGTA) was strongly (P < 0.0001) associa-

ted with the asthma phenotype in Latvians.

Identification of the genetic risk factors for asthma

is complicated by potential interaction of genes and me-

tabolic pathways, genotype with sex and environment;

most of the reported asthma genes were not replicated

across populations [4, 31]. The 14q11-24 chromosomal

region is one of well replicated asthma susceptibility lo-

ci [15–21]; the PSMA6, PSMA3 and PSMC6 proteaso-

mal genes located in the region were implicated earlier

in susceptibility to autoimmunity [22–24], inflamma-

tion [25–27] and historical and geographical adaptation

[28].

In this paper we provide for the first time the evi-

dence that polymorphism in the PSMA6, PSMC6, and

PSMA3 proteasomal genes may contribute to the risk of

childhood asthma in both Latvian and Taiwanese popu-

lations. The most remarkable finding of our study is

that haplotype CGACG was revealed to be a strong (P <

0.0001) asthma risk factor in both Latvians and Taiwa-

nese. Other identified asthma risk and protective sing-

le- and multi-locus genetic variants are different bet-

ween two populations. The difference between human
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Marker

Allele or

genotype

Distribution of alleles and genotypes, n (%)

BA patients Controls*

Total (n = 102) Females (n = 28) Males (n = 74) Total (n = 191) Females (n = 117) Males (n = 74)

rs2277460

C 176 (86.27) 47 (83.93) 129 (87.16) 357 (93.46) 232 (94.87) 135 (91.22)

A 28 (13.73) 9 (16.07) 19 (12.84) 25 (6.54) 12 (5.13) 13 (8.78)

CC 74 (72.55) 19 (67.86) 55 (74.32) 166 (86.91) 105 (89.74) 61 (82.43)

CA 28 (27.45) 9 (32.14) 19 (25.68) 25 (13.09) 12 (10.26) 13 (17.57)

rs1048990

C 165 (80.88) 44 (78.57) 121 (81.76) 348 (91.10) 211 (90.17) 137 (92.57)

G 39 (19.12) 12 (21.43) 27 (18.24) 34 (8.90) 23 (9.83) 11 (7.43)

– – – – – –

CC 65 (63.73) 16 (57.14) 49 (66.22) 158 (82.72) 95 (81.20) 63 (85.14)

CG 35 (34.31) 12 (42.86) 23 (31.08) 32 (16.75) 21 (17.95) 11 (14.86)

GG 2 (1.96) – 2 (2.70) 1 (0.52) 1 (0.85) –

rs2295826

A 166 (81.37) 47 (83.93) 119 (80.41) 342 (89.53) 204 (87.18) 138 (93.24)

G 38 (18.63) 9 (16.07) 29 (19.59) 40 (10.47) 30 (12.82) 10 (6.76)

AA 66 (64.71) 19 (67.86) 47 (63.51) 155 (81.15) 90 (76.93) 65 (87.84)

AG 34 (33.33) 9 (32.14) 25 (33.78) 32 (16.75) 24 (20.51) 8 (10.81)

GG 2 (1.96) – 2 (2.70) 4 (2.09) 3 (2.56) 1 (1.35)

rs2295827

C 166 (81.37) 47 (83.93) 119 (80.41) 342 (89.53) 204 (87.18) 138 (93.24)

T 38 (18.63) 9 (16.07) 29 (19.59) 40 (10.47) 30 (12.82) 10 (6.76)

CC 66 (64.71) 19 (67.86) 47 (63.51) 155 (81.15) 90 (76.93) 65 (87.84)

CT 34 (33.33) 9 (32.14) 25 (33.78) 32 (16.75) 24 (20.51) 8 (10.81)

TT 2 (1.96) – 2 (2.70) 4 (2.09) 3 (2.56) 1 (1.35)

rs2348071

G 119 (58.33) 34 (60.71) 85 (57.43) 270 (70.68) 170 (72.65) 100 (67.57)

A 85 (41.67) 22 (39.29) 63 (42.57) 112 (29.32) 64 (27.35) 48 (32.43)

GG 35 (34.31) 8 (28.57) 27 (36.49) 102 (53.40) 65 (55.55) 37 (50.00)

GA 49 (48.04) 18 (64.29) 31 (41.89) 66 (34.56) 40 (34.19) 26 (35.14)

AA 18 (17.65) 2 (7.14) 16 (21.62) 23 (12.04) 12 (10.26) 11 (14.86)

*Data on an allele and genotype presentation in control group are given according to Sjakste et al. [24, 28]; P - probability calculated by �
2
test;

Table 1

SNP allele and genotype distribution and data on association with paediatric asthma in Latvian population
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Marker ID

Allele or

genotype

Statistics

Genetic model Group P (Pc) OR [95 % CI]

rs2277460

C A vs C Total 0.0038 (0.0045) 2.272 [1.293–3.933]

A – Females 0.0032 (0.0059) 3.702 [1.506–9.101]

CC CA vs CC Total 0.0023 (0.0029) 2.512 [1.379–4.578]

CA – Females 0.0031 (0.0066) 4.145 [1.568–10.957]

rs1048990

C G vs C Total 0.0004 (0.0006) 2.419 [1.478–3.960]

G – Females 0.0167 (0.0238) 2.502 [1.157–5.342]

– Male 0.0054 (0.0085) 2.779 [1.339–5.768]

CC CG vs Total 0.0007 (0.0011) 2.596 [1.491–4.519]

CG CC + GG Females 0.0047 (0.0077) 3.429 [1.435–8.192]

GG – Male 0.0190 (0.0308) 2.583 [1.166–5.722]

rs2295826

A G vs A Total 0.0056 (0.0064) 1.957 [1.213–3.158]

G – Male 0.0011 (0.0022) 3.363 [1.596–7.088]

AA AG vs Total 0.0012 (0.0016) 2.484 [1.424–4.334]

AG AA + GG Male 0.0008 (0.0008) 4.209 [1.783–9.937]

GG – – – –

rs2295827

C G vs A Total 0.0056 (0.0064) 1.957 [1.213–3.158]

T – Male 0.0011 (0.0022) 3.363 [1.596–7.088]

CC AG vs Total 0.0012 (0.0016) 2.484 [1.424–4.334]

CT AA + GG Male 0.0008 (0.0008) 4.209 [1.783–9.937]

TT – – – –

rs2348071

G A vs G Total 0.0026 (0.0039) 1.722 [1.208–2.454]

A – – – –

GG GA vs Total 0.0244 (0.0343) 1.751 [1.075–2.851]

GA GG + AA Females 0.0035 (0.0059) 3.465 [1.485–8.085]

AA – – – –

P
c
– corrected probability calculated by Monte Carlo method with 10000 simulations.
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Marker

Allele or

genotype

Distribution of alleles and genotypes, n (%)

BA patients Controls*

Total (n = 159) Females (n = 69) Males (n = 90) Total (n = 1097) Females (n = 558) Males (n = 539)

rs2277460

C 315 (99.06) 137 (99.28) 179 (99.44) 1081 (99.27) 547 (99.01) 534 (99.54)

A 2 (0.63) 1 (0.72) 1 (0.56) 16 (0.73) 11 (0.99) 5 (0.46)

CC 157 (98.74) 68 (98.55) 89 (98.89) 1081 (98.54) 547 (98.03) 534 (99.07)

CA 2 (1.26) 1 (1.45) 1 (1.11) 16 (1.46) 11 (1.97) 5 (0.93)

rs1048990

C 209 (65.72) 85 (61.59) 124 (68.89) 1480 (67.46) 738 (66.13) 742 (68.83)

G 109 (34.28) 53 (38.41) 56 (31.11) 714 (32.54) 378 (33.87) 336 (31.17)

CC 66 (41.51) 28 (40.58) 38 (42.22) 462 (42.12) 228 (40.86) 234 (43.42)

CG 77 (48.43) 29 (42.03) 48 (53.33) 556 (50.68) 282 (50.54) 274 (50.83)

GG 16 (10.06) 12 (17.39) 4 (4.44) 79 (7.20) 48 (8.60) 31 (5.75)

rs2295826

A 286 (89.94) 129 (93.48) 157 (87.22) 1855 (84.55) 948 (84.95) 907 (84.14)

G 32 (10.06) 9 (6.52) 23 (12.78) 339 (15.45) 168 (15.05) 171 (15.86)

AA 129 (81.13) 60 (86.96) 69 (76.67) 778 (70.92) 404 (72.40) 374 (69.39)

AG 28 (17.61) 9 (13.04) 19 (21.11) 299 (27.26) 140 (25.08) 159 (29.05)

GG 2 (1.26) – 2 (2.22) 20 (1.82) 14 (2.51) 6 (1.11)

rs2295827

C 289 (90.88) 129 (93.48) 160 (88.89) 1872 (85.32) 962 (86.20) 910 (84.42)

T 29 (9.12) 9 (6.52) 20 (11.11) 322 (14.68) 154 (13.80) 168 (15.58)

CC 130 (81.76) 60 (86.96) 70 (77.78) 775 (70.64) 404 (72.40) 371 (68.83)

CT 29 (18.24) 9 (13.04) 20 (22.22) 322 (29.35) 154 (27.60) 168 (31.17)

TT – – – – – –

rs2348071

G 126 (39.62) 61 (44.20) 65 (36.11) 759 (34.59) 380 (34.05) 379 (35.16)

A 192 (60.38) 77 (55.80) 115 (63.89) 1435 (65.41) 736 (65.95) 699 (64.84)

GG 40 (25.16) 19 (27.54) 21 (23.33) 204 (18.60) 97 (17.39) 107 (19.85)

GA 46 (28.93) 23 (33.33) 23 (25.56) 351 (31.99) 186 (33.33) 165 (30.61)

AA 73 (45.91) 27 (39.13) 46 (51.11) 542 (49.41) 275 (49.28) 267 (49.54)

*Data on an allele and genotype presentation in control group are given according to Sjakste et al. [28]; P – probability calculated by �
2

test;

Table 2

SNP allele and genotype distribution and data on association with paediatric asthma in Taiwanese population
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Marker ID

Allele or

genotype

Statistics

Genetic model Group P (Pc) OR [95 % CI]

rs2277460

C – – –
–

A – – – –

CC – – – –

CA – – – –

rs1048990

C – – – –

G – – – –

CC GG vs Females 0.0192 (0.0311) 2.237 [1.135–4.410]

CG CC + CG – – –

GG – – – –

rs2295826

A G vs A Total 0.0114 (0.0117) 0.612 [0.418–0.896]

G – Females 0.0066 (0.0094) 0.394 [0.200–0.776]

AA AG vs Total 0.0094 (0.0091) 0.570 [0.372–0.873]

AG AA + GG Females 0.0266 (0.0346) 0.488 [0.220–0.911]

GG – – – –

rs2295827

C T vs C Total 0.0076 (0.0099) 0.583 [0.392–0.868]

T – Females 0.0165 (0.0215) 0.436 [0.221-0.861]

CC CT vs CC Total 0.0023 (0.0024) 0.523 [0.344–0.796]

CT – Females 0.0093 (0.0117) 0.394 [0.194–0.799]

TT – – – –

rs2348071

G C vs A Females 0.0185 (0.0228) 1.534 [1.74–2.192]

A – – – –

GG GG vs Females 0.0404 (0.0315) 1.806 [1.025–3.182]

GA GA + AA – – –

AA – – – –

P
c
– corrected probability calculated by Monte Carlo method with 10000 simulation.



populations in asthma genetics is a well-known pheno-

menon described for a number of asthma susceptible

loci having mainly ethnos specific differences in gene-

tic diversity [4]. The Latvian and Taiwanese popula-

tions significantly differ in genetic diversity of loci stu-

died here [28]. This suggests involvement of these loci

in the processes of evolutional and/or geographical

adaptation to environment and a potential for allele

substitutions to have different ethnic specific influence

on the human health and population morbidity [28].

Several associations revealed in our study showed

non-additivity between sexes. In Latvians the rs2277460

and rs2348071 were associated with asthma in females,

and the rs2295826 and rs2295827 were disease suscep-

tible in males; in Taiwanese all asthma susceptible loci

were limited to females. Sex specific differences in inci-

dence, prevalence, and severity are also well known fea-

tures of asthma epidemiology. Sex-specific associations

with the disease have been recently reported for SNPs

of several genes-candidates including the IFNG [31],

IL17F [32], TSLP [33], VDR [34], and KCNB1 [35]

genes. Our analysis of the BA main effect in Latvian

population is a subject to some limitation as sexes were

not equally presented in both BA and control groups.

Although a significant asthma main effect was detected

for all five loci studied, only the rs1048990 showed an

additive effect that was an association in both females

and males. The replication study in additional larger co-

horts represented by sexes equally is required to valida-

te the results found in the current study for Latvian po-

pulation.

Due to the pleiotropic effect, a frequent phenome-

non in human complex traits and diseases [36], some lo-

ci of susceptibility may be shared among many autoim-

mune and other immune-mediated diseases [37, 38].

Earlier the genetic pleiotropic effect has been reported

for asthma and obesity [39, 40] and for asthma and ju-

venile rheumatoid arthritis [41, 42]. Similarly, SNPs as-

sociated with asthma in our current study, previously

have been found to be susceptible in Latvians to other

immune-mediated pathologies including juvenile idio-

pathic arthritis [24, 43], children obesity [44] and mul-

tiple sclerosis [45]. The rs1048990 was widely genoty-

ped in many human populations and reported as an eth-

nic specific risk factor for inflammation within the car-

dio-vascular system [27, 28].

All loci we have studied here belong to the non-co-

ding regions of corresponding genes and nucleotide

substitutions potentially may influence the gene expres-

sion through allele specific targeting of different regu-

latory elements. Among the allele-specific targets de-

scribed by Sjakste with co-authors earlier [24, 28], se-

veral sites showed affinity to transcription factors and

splicing signals implicated previously in immunity, lung

function and lung pathology. The targeting of these re-

gulatory proteins may influence asthma pathogenesis

and needs to be mentioned in respect of current study.

The rs2277460 ancestral allele C, the major allele in hu-

man populations over the world, appears to be functional-

ly neutral. Substitution to A generates a target to hnRNP

A1, a multifunctional protein implicated in the associa-

tion with multiple promoter sequences and modulation

of a number of transcriptional events [46]. The hnRNP

A1 has been shown to play a key role in many human

pathologies including lung cancer and response to viral

pathogens [46, 47]. It may influence protein-protein in-

teractions including those with participation of NF-�B

[46] playing in turn a significant role in the asthma de-

velopment and progression [5–7]. Additionally, it is in-

volved in crosstalk with ubiquitin proteasome system

at different levels of NF-�B and other regulatory pro-

teins signaling pathways [48]. Allele A also assists to

sequence affinity to the BARBIE box proteins found to

be involved in inflammatory response of alveolar mac-

rophages [49]. Substitution C � G at the rs1048990

was shown to influence the gene expression in vivo and

in vitro [27, 50] and significantly change the sequence

capacity to bind a number of splicing signals and

transcription factors [28]. Rare allele G generates bind-

ing sites for the multifunctional proteins of p53 and

DMRT families implicated in the processes of climatic

[51] and evolutional [52] adaptation. The targeting of

these proteins potentially could be involved in the

mechanisms of natural selection and ethnos specific

susceptibility to inflammation [27, 28].

Common allele A of the rs2295826 (first intron of

the PSMC6 gene) generates the targets for the mentio-

ned above hnRNP A1 regulatory protein and for the

transcription factor of CREB family involved in trans-

criptional control of many pro-inflammatory genes [53,

54] and implicated in asthma pathogenesis [55], asthma

phenotypes and response to therapy [56].
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The rs2348071 SNP strongly discriminates Latvi-

ans having a major allele G (about 70 %) and Taiwane-

se having a major ancestral allele A (about 70 %). Pre-

viously we have suggested [28] that transition A � G

happened in Caucasians about 15,000 years ago was

supported by positive selection. This mutation elimina-

tes potential targets for hnRNP A1 and the transcription

factors of CART family shown to be an essential parti-

cipant of signaling respiratory network [57] and the

MEF2 family implicated in transcriptional switch bet-

ween metabolism and immunity [58].

Summarizing mentioned results we suggest that the

nucleotide substitutions we have studied may signifi-

cantly modulate the transcription of related genes and

gene network in response to the inflammation and other

environmental stimuli and influence the asthma sus-

ceptibility.

Conclusions. Our findings provide an evidence that

single- and multi locus variations in the 14q13-23 PSMA6/

PSMC6/PSMA3 proteasomal genes cluster are associa-

ted with childhood asthma in Latvian and Taiwanese

populations and could play an important role in asthma

and other immune-mediated pathologies in both Cauca-

sians and Asians, as either the risk or protective ethnic-

and sex-specific genetic factors.

Identification of genetic variants susceptible to asth-

ma and other immune-mediated pathologies, both com-

mon and different across populations, is important in

understanding pathogenesis and phenotype variability

of these multifactorial diseases. It might be a subject of

thorough investigation in the nearest future.
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Ãåíåòè÷í³ âàð³àíòè ãåí³â PSMA6, PSMC6 ³ PSMA3, àñîö³éîâàí³

ç áðîíõ³àëüíîþ àñòìîþ ó ä³òåé ëàòâ³éñüêî¿ ³ òàéâàíüñüêî¿

ïîïóëÿö³é

Í. Ïàðàìîíîâà, Ë. Ñ.-Ñ. Âó, ². Ðóìáà-Ðîçåíôåëäå, Äæ.-ß. Âàíã,

Í. Ñüÿêñòå, T. Ñüÿêñòå

Ðåçþìå

Ïðîòåàñîìè îïîñåðåäêîâóþòü ðåàë³çàö³þ ôóíêö³é ñèãíàëüíèõ

á³ëê³â, çàëó÷åíèõ äî ïàòîãåíåçó áðîíõ³àëüíî¿ àñòìè. Ìåòà. Îö³-

íèòè çàãàëüíó ³ çàëåæíó â³ä ñòàò³ àñîö³àö³þ âàð³àö³é ïðîòåàñîì-

íèõ ãåí³â PSMA6, PSMC6 ³ PSMA3 ç áðîíõ³àëüíîþ àñòìîþ ó ä³-

òåé ³ç Ëàòâ³¿ ³ Òàéâàíÿ. Måòîäè. Îäíîíóêëåîòèäí³ ïîë³ìîðô³ç-

ìè rs2277460, rs1048990, rs2295826, rs2295827 ³ rs2348071 ãåíî-

òèïîâàíî ó 102 õâîðèõ ç Ëàòâ³¿ ³ 159 – ç Òàéâàíÿ. Äëÿ ïîð³âíÿííÿ

âçÿòî êîíòðîëüí³ ãðóïè, ÿê³ ïðåäñòàâëÿþòü ãåíåòè÷íå ð³çíîìà-

í³òòÿ â ïîïóëÿö³ÿõ: 191 ëàòâ³éñüêèõ ³ 1097 òàéâàíüñüêèõ çðàçê³â.

Ðåçóëüòàòè. Ãàïëîòèï CGACG âèÿâèâñÿ ò³ñíî (P < 0.0001) àñî-

ö³éîâàíèì ç ðèçèêîì ðîçâèòêó àñòìè â îáîõ ïîïóëÿö³ÿõ. Ãåòåðî-

çèãîòí³ ãåíîòèïè çà âñ³ìà ëîêóñàìè ³ ãàïëîòèï CCGTA ³äåíòèô³-

êîâàíî ÿê ôàêòîð ðèçèêó äëÿ ðîçâèòêó àñòìè ó æèòåë³â Ëàòâ³¿.

Ãîìîçèãîòè GG ïî rs1048990 ³ rs2348071 ïîâ’ÿçàí³ ç ðèçèêîì, à ãå-

òåðîçèãîòè ïî rs2295826 ³ rs2295827 ïðîÿâëÿþòü çàõèñíèé

åôåêò ç-ïîì³æ òàéâàíüñüêèõ æ³íîê. Áàãàòîëîêóñí³ ãåíîòèïè, ãî-

ìîçèãîòí³ çà ðîçïîâñþäæåíèìè â Ëàòâ³¿ àëåëÿìè, âèÿâèëèñÿ çà-

õèñíèìè äëÿ æèòåë³â Ëàòâ³¿, àëå ïîâ’ÿçàíèìè ç ðèçèêîì çàõâîðþ-

âàííÿ ñåðåä òàéâàíüö³â. Âèñíîâêè. Íàø³ ðåçóëüòàòè âêàçóþòü

íà àñîö³àö³þ ïîë³ìîðô³çì³â ïðîòåàñîìíèõ ãåí³â ëîêóñó 14q13-23 ç

áðîíõ³àëüíîþ àñòìîþ ñåðåä ä³òåé ó ëàòâ³éñüê³é ³ òàéâàíüñüê³é

ïîïóëÿö³ÿõ, àñîö³àö³ÿ ìîæå áóòè ïîâ’ÿçàíà ÿê ç ðèçèêîì çàõâîðþ-

âàííÿ, òàê ³ ç çàõèñíèì åôåêòîì. Çà äàíîþ îçíàêîþ ïîïóëÿö³¿ ìî-

æóòü ð³çíèòèñÿ àáî íå ð³çíèòèñÿ.

Këþ÷îâ³ ñëîâà: õðîìîñîìà 14q13-23, îäíîíóêëåîòèäí³ ïîë³ìîð-

ô³çìè, PSMA6, PSMC6, PSMA3, áðîíõ³àëüíà àñòìà ó ä³òåé.

Ãåíåòè÷åñêèå âàðèàíòû ãåíîâ PSMA6, PSMC6 è PSMA3,

àññîöèèðîâàííûå ñ áðîíõèàëüíîé àñòìîé ó äåòåé â ëàòâèéñêîé

è òàéâàíüñêîé ïîïóëÿöèÿõ

Í. Ïàðàìîíîâà, Ë. Ñ.-Ñ. Âó, È. Ðóìáà-Ðîçåíôåëäå, Äæ.-ß. Âàíã,

Í. Ñüÿêñòå, T. Ñüÿêñòå

Ðåçþìå

Ïðîòåàñîìû îïîñðåäóþò ðåàëèçàöèþ ôóíêöèé ñèãíàëüíûõ áåë-

êîâ, âîâëå÷åííûõ â ïàòîãåíåç áðîíõèàëüíîé àñòìû. Öåëü. Îöåíèòü

îáùóþ è çàâèñèìóþ îò ïîëà àññîöèàöèþ âàðèàöèé ïðîòåàñîìíûõ

ãåíîâ PSMA6, PSMC6 è PSMA3 ñ áðîíõèàëüíîé àñòìîé ó äåòåé èç

Ëàòâèè è Òàéâàíÿ. Måòîäû. Îäíîíóêëåîòèäíûå ïîëèìîðôèçìû

rs2277460, rs1048990, rs2295826, rs2295827 è rs2348071 ãåíîòè-

ïèðîâàíû ó 102 áîëüíûõ èç Ëàòâèè è 159 – èç Òàéâàíÿ. Äëÿ ñðàâíå-

íèÿ âçÿòû êîíòðîëüíûå ãðóïïû, ïðåäñòàâëÿþùèå ãåíåòè÷åñêîå

ðàçíîîáðàçèå â ïîïóëÿöèÿõ: 191 ëàòâèéñêèõ è 1097 òàéâàíüñêèõ

îáðàçöîâ. Ðåçóëüòàòû. Ãàïëîòèï CGACG îêàçàëñÿ òåñíî (P <

0.0001) àññîöèèðîâàííûì ñ ðèñêîì ðàçâèòèÿ àñòìû â îáåèõ ïîïó-

ëÿöèÿõ. Ãåòåðîçèãîòíûå ãåíîòèïû ïî âñåì ëîêóñàì è ãàïëîòèï

CCGTA èäåíòèôèöèðîâàíû êàê ôàêòîð ðèñêà äëÿ ðàçâèòèÿ àñò-

ìû ó æèòåëåé Ëàòâèè. Ãîìîçèãîòû GG ïî rs1048990 è rs2348071

ñâÿçàíû ñ ðèñêîì, à ãåòåðîçèãîòû ïî rs2295826 è rs2295827 ïðî-

ÿâëÿþò çàùèòíûé ýôôåêò ñðåäè òàéâàíüñêèõ æåíùèí. Ìíîãî-

ëîêóñíûå ãåíîòèïû, ãîìîçèãîòíûå ïî ðàñïðîñòðàíåííûì â Ëàò-

âèè àëëåëÿì, îêàçàëèñü çàùèòíûìè äëÿ æèòåëåé Ëàòâèè, íî ñâÿ-

çàííûìè ñ ðèñêîì çàáîëåâàíèÿ ñðåäè òàéâàíüöåâ. Âûâîäû. Íàøè

ðåçóëüòàòû óêàçûâàþò íà àññîöèàöèþ ïîëèìîðôèçìîâ ïðîòåà-

ñîìíûõ ãåíîâ ëîêóñà 14q13-23 ñ áðîíõèàëüíîé àñòìîé ñðåäè äå-

òåé â ëàòâèéñêîé è òàéâàíüñêîé ïîïóëÿöèÿõ, àññîöèàöèÿ ìîæåò

áûòü ñâÿçàíà êàê ñ ðèñêîì çàáîëåâàíèÿ, òàê è ñ çàùèòíûì ýô-

ôåêòîì. Ïî äàííîìó ïðèçíàêó ïîïóëÿöèè ìîãóò îòëè÷àòüñÿ èëè

íå îòëè÷àòüñÿ.

Këþ÷åâûå ñëîâà: õðîìîñîìà 14q13-23, îäíîíóêëåîòèäíûå ïîëè-

ìîðôèçìû, PSMA6, PSMC6, PSMA3, áðîíõèàëüíàÿ àñòìà ó äåòåé.
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