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The nuclear envelope is a double membrane structure, continuous with endoplasmic reticulum, and the morpho-

logical organization of both these structures is quite conservative. However, nuclear envelope and endoplasmic

reticulum demonstrate distinct structural plasticity, i. e., based on common organization, cells may form various

non-canonical membrane structures that are observed only in specialized types of cells or appear in different pa-

thologies. In this review, we will discuss the mechanisms of the biogenesis of such non-canonical structures, and

the possible role of this plasticity in the development of pathological processes.

Keywords: nuclear envelope, endoplasmic reticulum, structural plasticity.

Introduction. The nuclear envelope (NE) is a double li-

pid bilayer consisting of the outer nuclear membrane

(ONM), continuous with endoplasmic reticulum (ER),

and inner nuclear membrane (INM). The morphologi-

cal organization of NE and ER is quite conservative but

based on this organization, cells may form various non-

canonical membrane structures observed only in specia-

lized types of cells or appearing in different patholo-

gies (Figure). Recent studies have led to significant ad-

vances in the understanding of the biogenesis of such

non-canonical structures, most notably in studies ana-

lyzing the overexpression of different proteins of NE

and ER.

The nuclear envelope. The NE is formed by INM

and ONM, which are separated by a periplasmic space.

Although ONM is contiguous with ER, INM contains at

least 100 unique components specific to this membrane

[1–3].

Huge nuclear pore complexes (NPCs) are localized

in perforations formed in NE membranes. NPCs are

composed of multiple copies of ~ 30 distinct proteins

(nucleoporins) arranged with eightfold radial symmet-

ry, leading to an assembly of 500–1000 proteins with an

estimated mass of ~ 125 MDa in vertebrates [4]. Recent-

ly, NPCs with ninefold symmetry that are found occa-

sionally among the more typical eightfold symmetrical

structures were described [5]. The yeast NPC organiza-

tion was extensively investigated, and the molecular ar-

chitecture was described using immuno-electron micro-

scopy [6]. Altered expression of some nucleoporins af-

fects both the nuclear size and shape. For example, dele-

tion of yeast proteins Mlp1p and Mlp2p, structural com-

ponents of the NPC basket, led to increased NPC mo-

bility and clustering and the formation of misshapen

nuclei that frequently exhibited NE blebs [7]. Nup136

overexpression in Arabidopsis thaliana increased nuc-

lear size and elongation, whereas reduced Nup136 ex-

pression resulted in smaller, more spherical nuclei [8, 9].

NPCs control nuclear-cytoplasmic traffic. In some

cases, NPCs do not provide a reliable separation of the

nucleus and cytoplasm, e. g., pore permeability increa-

ses during the development of viral infections, leading

to the displacement of nuclear proteins into the cyto-

plasm and vice versa [10, 11]. It has also been shown
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that pore permeability may increase during aging as a

result of the destruction of long-lived nucleoporins [12].

Typically, traffic via NPCs is considered as the on-

ly way for cargoes to be transferred between the nuc-

leus and the cytoplasm. However, some viruses are ab-

le to bypass NPCs in membrane vesicles that bud from

the INM and merge with the ONM [13, 14]. A similar

nuclear export process was recently described for large

ribonucleoprotein particles involved in Wnt signaling

in Drosophila larvae muscle cells [15]. The extent of

the use of this nuclear export mechanism is currently

unknown.

Plasticity of the NE. INM is adjacent to a thin (15–

20 nm) protein layer, the nuclear lamina, which plays

an important role in the formation and maintenance of

the structural integrity of the cell nucleus. The lamina is

composed of A- and B-type lamins, which belong to the

type V intermediate filament family. Biochemical studies

have shown that purified lamins can assemble in vitro

into filamentous structures [16–18]. The mechanisms of

the formation of the nuclear lamina in vivo are not well

known.

Cells are capable of existing without lamin A, as it is

known not to be expressed in embryonic cells [19]. B-

type lamins are found in all cells; however studies using

mice with knockout of both B-type lamins (B1 and B2)

indicates the possibility that cells may exist without the-

se proteins [20, 21].

An important parameter is the stoichiometry of A-

type and B-type lamins. In liver and brain, A-type lamins

have relatively low expression levels, whereas A-type

lamins are increased in heart and muscle to withstand

mechanical stresses and to limit potential disruption of

chromatin [22]. Differentiation of embryonic stem cells

was accompanied by increased level of A/C-type la-

mins [23, 24]. Downregulation of A-type lamins and

concomitant irregularities in nuclear shape are exhibi-

ted in many cancers. For example, A-type lamins show

low or no expression in small cell lung cancer cells [25–

27]. In colon cancers [28], gastric cancers [29, 30], breast

cancers [31, 32] and diffuse large B-cell lymphomas

[33], the A-type lamin expression is also greatly reduced

and correlates with increased recurrence of disease and a

poor prognosis.

Lamin B1 overexpression leads to excessive produc-

tion of the NE [34, 35], resulting in numerous invagina-

tions. NE in such cells contains fewer nuclear pores [35]

than in control cells. It appears that the excess NE is not

a compensatory response but rather a consequence of la-

min self-assembly, which is similar to self-assembly in

vitro [16–18]. The formation of invaginations may be a

consequence of excess surface area relative to a constant
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nuclear volume and therefore a consequence purely dri-

ven by geometry. It should be stressed that the ER system

is very poorly developed in cells overexpressing lamin

B1, indicating that the NE growth is due to the ER mem-

brane [35].

The overexpression of B-type lamin might be the cau-

se of some diseases. For example, overexpression of the

Drosophila ortholog of lamin B1 (Dm0) leads to neuro-

nal cell death and a reduced life span [36]. It is also known

that duplication of LMNB1 leads to neuronal demyeli-

nation and the development of autosomal dominant leu-

kodystrophy [37].

The overexpression of lamin A does not produce

significant growth of the NE but results in local reorga-

nization of the NE, in particular, the formation of protru-

sions from the nuclear surface (nuclear blebs), were ob-

served in cells overexpressing lamin A [35]. Important-

ly, nuclei of prostate cancer cells and some other cancer

types contain nuclear blebs enriched in lamin A/C but

deficient in lamin B [38, 39].

The overexpression of two transmembrane nucleo-

porins, Ndc1 and Pom121, produces formation of cyto-

plasmic aggregates of membrane tubules [35]. Any tu-

bular structures are characterized by the presence of

strong membrane bending, therefore one can assume

that these nucleoporins either induce membrane ben-

ding or recruit proteins that bend membranes. It is im-

portant to note that Ndc1 [40–43] and Pom121 [44–46]

play an important role in the de novo formation of new

pore complexes, a process also conjugated with memb-

rane bending.

Additionally, the structural organization of the NE

might be affected not only by changing protein concent-

ration but also by the changing the ability of proteins to

interact with each other.

Recently, the role of protein SUN1 was demonstra-

ted in the development of Hutchinson-Gilford progeria

syndrome, a disease associated with a mutation of lamin

A [47]. Mutant lamin A (progerin) has a high affinity

for SUN1, leading to aberrant recruitment of progerin

to the ER membranes during postmitotic assembly of

the nuclear envelope. The dysregulated interaction of

SUN1 and progerin during the NE reformation contri-

butes to nuclear aberrancies typical to Hutchinson-

Gilford progeria syndrome. This is a consequence of

local but not total increases in protein concentration due

to enhanced affinity of the protein to a structure at the

moment of its formation.

Intranuclear membrane structures. INM can form

small protrusions inside the nucleus [35]. Additionally,

inside the nuclei of some tumor cells, compact clusters

of membrane tubules have been described [48]. The

functional significance of these intranuclear protru-

sions and intranuclear tubular complexes are currently

unknown. Such structures are formed in large quantiti-

es after lamin A overexpression, particularly following

the nucleoporin Pom121 overexpression [35]. More-

over, following the Pom121 overexpression, some cells

were observed to contain globules with increased amo-

unts of this protein within the nucleus. Using correla-

tive light and electron microscopy, these complexes ha-

ve been shown to be formed by membranes represen-

ting protrusions of the INM. Besides, such hypertro-

phic INM protrusions have been described to form nuc-

leolar channel system [49, 50]. The nucleolar channel

system consists of a set of intranuclear clusters of mem-

brane tubules, which are located near the nuclear enve-

lope or nucleoli. Such structures are identified in endo-

metrial cells on 16–24 days of the menstrual cycle. The

nucleolar channel system formation is induced by pro-

gesterone [51, 52]

Intranuclear membrane structures can be induced by

the nucleolar protein Nopp140 [53] as well as proteins

of NE. Following protein overexpression, intranuclear

Nopp140-containing globules (R-rings) are observed.

These complexes are formed by concentrically packed

membranes which contain ER-specific membrane pro-

teins. The morphology of these complexes and their

proteins are very similar to those in the nucleolar chan-

nel system. In particular, both structures contain Nopp

140, which may be the major component that induces

biogenesis of R-rings and of the nucleolar channel sys-

tem [53]. Afterwards, it was also demonstrated that the

formation of this system is complex and depends on ano-

ther as yet unidentified protein [54]. Morphologically

similar intranuclear membrane complexes have been

observed in cells after prelamin A accumulation [55],

overexpression of nucleoporin Nup153 [56], and lamin

B2 [57].

The mechanisms of INM protrusion growth are poor-

ly understood. The simplest assumption is that they

form as a compensatory response to abundant formation
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of INM (similar to the formation of NE invaginations af-

ter lamin B1 overexpression). However, it should be no-

ted that the Pom121-induced protrusions are formed on-

ly after the cell passes through mitosis, i. e., as a patho-

logical response to the post-mitotic NE formation [35].

The NE of metazoan cells completely disintegrates

during cell division to allow the mitotic spindle to ac-

cess chromosomes. During mitosis, the majority of so-

luble NE proteins are distributed throughout the cyto-

plasm and transmembrane NE proteins reside in the mi-

totic ER [58–60]. It is important that membrane com-

ponents are absent in the zone occupied by the mitotic

spindle. It seems that the removal of membrane vesic-

les from the mitotic spindle determines the absence of

membrane structures within the nuclei. It has been shown

that the mitotic phosphorylation of the ER protein

STIM1 is responsible for the dissociation of membrane

vesicles from microtubules [61]. Non-phosphorylatab-

le STIM1 leads to faulty localization of ER vesicles in

mitosis, with vesicles localized inside the mitotic spind-

le. Additionally, the ER protein REEP3/4 was identified

as having the ability to bind microtubules [62]. Deple-

tion of this protein leads to the accumulation of ER ve-

sicles on the surface of chromosomes, which in turn leads

to the formation of intranuclear membrane structures in

postmitotic cells [62]. Unfortunately, the nature of the-

se structures has not been described, due to an absence

of electron microscopic data. However, the results of

these studies suggest that alterations of post-mitotic bio-

genesis of the NE may be a possible mechanism underly-

ing the formation of intranuclear membrane structures.

The endoplasmic reticulum. ER is a highly dyna-

mic cellular compartment, and its organization differs

between cell types. In cultured cells, ER forms a net-

work of membrane structures defined as either riboso-

me-covered (rough ER) or ribosome-free (smooth ER).

The ER components can be divided into two distinct mor-

phological types, cisternae and tubules, which are the ma-

jor components of rough and smooth ER, respectively.

ER is able to change its structural organization depen-

ding on the physiological state of the cell. A classic exa-

mple of the fast reorganization of ER is the development

of a smooth ER system in cells in response to phenobar-

bital [63].

The structural organization of ER and the possibili-

ty of structural transitions between different forms of ER

depend on reticulons and DP1/Yop1p proteins, which

are responsible for the formation of ER tubules, i. e., ER

components with highly curved membranes [64]. The-

se proteins specifically act to induce curvature by inser-

ting into the outer leaflet of the membrane [65]. The

overexpression of certain reticulon proteins leads to the

assembly of long tubules, whereas the absence of both

reticulons and Yop1p in yeast leads to the loss of tubu-

lar ER [64]. Importantly, these proteins are excluded

from ER sheets and NE, which may be considered as a

flat ER sheet; however, reticulons have been shown to

be involved in NPC assembly, most likely through the

creation of a NE pore [66, 67].

Plasticity of endoplasmic reticulum. The nuclear

membrane is an integral structural part of ER, which in

turn is structurally and functionally closely associated

with the Golgi complex. For a long time, both the Golgi

and ER were considered stable structures; however, ob-

servations of live cells have demonstrated that the ma-

terial in these compartments are constantly and rapidly

exchanged [68], so that this macroscopically stable

structure is formed by dynamic components. Morpho-

logical organization of ER and the Golgi complex de-

pends on the balance of inflow and outflow compo-

nents. For example, inhibition of the component inflow

from ER leads to disassembly of the Golgi complex

[69].

In cultured cells, ER forms a network of branching

tubular structures and cisternae. In some situations, this

network may be partially transformed into the so-called

organized smooth ER (OSER), which may have diffe-

rent morphologies but is always characterized by an or-

dered packing of the membranes. Such structures are

described after treatment with toxic substances [70–

72]. Of particular interest is the fact that OSER can be

formed after overexpression of certain proteins of the

ER and NE [72–79].

OSER formation can be caused by dynamic interac-

tions between cytoplasmic domains of the membrane

proteins [78]. Some proteins cannot induce OSER for-

mation but are able to form homodimers after fusion of

the cytosolic domain with either GFP or YFP and gain

the ability to induce the formation of OSER [78, 80].

This has been exploited to assess the tendency of fluo-

rescent proteins to oligomerize under physiologic con-

ditions [81].
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The interactions leading to the reorganization of ER

and formation of OSER have been shown to be weak –

thus cytochrome b(5) demonstrated a lateral mobility in

the membrane and is able to move freely inside and bet-

ween OSER and the rest of the ER [78]. Some proteins

of the nuclear envelope are capable of inducing reorga-

nization of the ER network. Expression of the INM pro-

tein, Lap2�, leads to the development of OSER comp-

lexes formed with numerous tightly packed ER memb-

ranes [79]. Despite the high packing density of the memb-

ranes, Lap2� retained high lateral mobility. Low lateral

mobility was described for YFP-tagged langerin, a pro-

tein required for the biogenesis of Birbeck granules, the

characteristic organelles of Langerhans cells [80]. How-

ever, in this case, the formation of OSER was caused by

the YFP oligomerization.

The OSER formation may be induced by the overex-

pression of different proteins, suggesting that this pro-

cess is nonspecific. Moreover, there are some similari-

ties between these complexes and intranuclear memb-

rane complexes. Neither of these structures result from

a compensatory response; instead, they result from the

ability of abundant proteins to induce an excessive mem-

brane modification (bending, collapse, stacking, etc.).

Such membrane structures may be formed by the action

of membrane proteins that have lost their ability to be

exported from the ER due to mutation. Such pathologi-

cal phenotypes, in particular, have been observed in a

mouse model of Charcot-Marie-Tooth disease [82] and

torsion dystonia [83].

Nucleoporins are localized not only in NE but also

in the cytoplasmic stacks of membrane cisternae pier-

ced by numerous pore complexes. Such complexes are

called annulate lamellae (AL). AL have been described

in the cytoplasm of a wide variety of cells, notably in

oocytes, embryonic cells, and rapidly dividing cells in-

cluding many types of tumor cells. Prolonged exposure

to sublethal doses of the antimitotic drugs colchicine

and vinblastine sulfate induces AL in diverse cell types

and species [84]. AL are rarely found in the nucleo-

plasm, for example, in rat trophoblast cells at the de-

finitive stage of differentiation [85].

Over the years, a variety of roles have been ascri-

bed to AL [84], with the prevalent consensus that AL

are stockpiles of excess nucleoporins that support sub-

sequent, rapid cell divisions. In support of this theory,

the major fraction of the nucleoporin Nup62 is locali-

zed inside AL [86] in Xenopus stage VI oocytes. How-

ever, in Drosophila embryos, AL have only a minor role

in storing excess maternally contributed nucleoporins

[87]. This is indicative of the fact that AL have func-

tions unrelated to the preservation of excess nucleopo-

rins, such as changing ER properties. In particular, it

was shown that NPCs within AL suppress local Ca2+ sig-

naling activity of the ER [88].

The expression of individual proteins normally do-

es not lead to the appearance of additional AL. The on-

ly example of such induction was described for Pom121-

overexpressing cells [89]. However, using correlative

light and electron microscopy, it was demonstrated that

Pom121-containing cytoplasmic complexes are formed

by membrane tubules and do not contain NPCs, i. e.,

they are not AL [35]. In this regard, it should be noted

that some reports indicate AL do not contain Pom121

[90].

Conclusions. NE and ER demonstrate high structu-

ral plasticity and the ability to vary according to the phy-

siological conditions and during the development of pa-

thological processes. Heterogeneity in the organization

of these structures may depend on changes in the global

or local concentrations of the individual components.

This has been confirmed with numerous data showing

changes in membrane structures following overexpres-

sion of NE and ER proteins. The available data suggest

that both NE and ER demonstrate an apparent structu-

ral plasticity, leading to physiological cell adaptation to

changes in the external environment, specialized func-

tions in differentiated cells or the development of patho-

logical processes.
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Ñòðóêòóðíà ïëàñòè÷í³ñòü ÿäåðíî¿ îáîëîíêè ³

åíäîïëàçìàòè÷íîãî ðåòèêóëóìó

ª. Â. Øåâàëü, ß. Ð. Ìóñèíîâà

Ðåçþìå

ßäåðíà îáîëîíêà – äâîìåìáðàííà ñòðóêòóðà, íåïåðåðâíà ç åíäî-

ïëàçìàòè÷íèì ðåòèêóëóìîì, ïðè÷îìó ìîðôîëîã³÷íà îðãàí³çàö³ÿ

öèõ ñòðóêòóð äîñèòü êîíñåðâàòèâíà. Îäíàê äëÿ ÿäåðíî¿ îáîëîíêè

³ åíäîïëàçìàòè÷íîãî ðåòèêóëóìó õàðàêòåðíà âèðàæåíà ñòðóê-
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òóðíà ïëàñòè÷í³ñòü, òîáòî íà îñíîâ³ ñï³ëüíî¿ îðãàí³çàö³¿ â êë³òè-

íàõ ìîæóòü ôîðìóâàòèñÿ ð³çí³ íåêàíîí³÷í³ ñòðóêòóðè, ÿê³ âèÿâ-

ëÿþòüñÿ àáî â ñïåö³àë³çîâàíèõ êë³òèíàõ, àáî çà ðîçâèòêó äåÿêèõ

ïàòîëîã³é. Ó ïðåäñòàâëåíîìó îãëÿä³ ðîçãëÿíóòî ìåõàí³çìè á³îãå-

íåçó ïîä³áíèõ íåêàíîí³÷íèõ ñòðóêòóð, à òàêîæ ìîæëèâó ðîëü

ñòðóêòóðíî¿ ïëàñòè÷íîñò³ ó ðîçâèòêó ïàòîëîã³÷íèõ ïðîöåñ³â.

Êëþ÷îâ³ ñëîâà: ÿäåðíà îáîëîíêà, åíäîïëàçìàòè÷íèé ðåòèêó-

ëóì, ñòðóêòóðíà ïëàñòè÷í³ñòü.

Ñòðóêòóðíàÿ ïëàñòè÷íîñòü ÿäåðíîé îáîëî÷êè è

ýíäîïëàçìàòè÷åñêîãî ðåòèêóëóìà

Å. Â. Øåâàëü, ß. Ð. Ìóñèíîâà

Ðåçþìå

ßäåðíàÿ îáîëî÷êà – äâóõìåìáðàííàÿ ñòðóêòóðà, íåïðåðûâíàÿ ñ

ýíäîïëàçìàòè÷åñêèì ðåòèêóëóìîì, ïðè÷åì ìîðôîëîãè÷åñêàÿ îð-

ãàíèçàöèÿ ýòèõ ñòðóêòóð äîñòàòî÷íî êîíñåðâàòèâíà. Îäíàêî äëÿ

ÿäåðíîé îáîëî÷êè è ýíäîïëàçìàòè÷åñêîãî ðåòèêóëóìà õàðàêòåð-

íà âûðàæåííàÿ ñòðóêòóðíàÿ ïëàñòè÷íîñòü, ò. å. íà îñíîâå îá-

ùåé îðãàíèçàöèè â êëåòêàõ ìîãóò ôîðìèðîâàòüñÿ ðàçëè÷íûå íå-

êàíîíè÷åñêèå ñòðóêòóðû, âûÿâëÿþùèåñÿ ëèáî â ñïåöèàëèçèðîâàí-

íûõ êëåòêàõ, ëèáî ïðè ðàçâèòèè íåêîòîðûõ ïàòîëîãèé. Â íàñòîÿ-

ùåì îáçîðå ðàññìîòðåíû ìåõàíèçìû áèîãåíåçà ïîäîáíûõ íåêàíî-

íè÷åñêèõ ñòðóêòóð, à òàêæå âîçìîæíàÿ ðîëü ñòðóêòóðíîé ïëà-

ñòè÷íîñòè â ðàçâèòèè ïàòîëîãè÷åñêèõ ïðîöåññîâ.

Êëþ÷åâûå ñëîâà: ÿäåðíàÿ îáîëî÷êà, ýíäîïëàçìàòè÷åñêèé ðå-

òèêóëóì, ñòðóêòóðíàÿ ïëàñòè÷íîñòü.
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