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Toll-like receptors (TLR), the main class of immune-sensor molecules triggering the innate immunity pathways,

are known to be involved in the infection of different RNA and DNA viruses, including herpesviruses. Human cy-

tomegalovirus (HCMV) is a widespread human beta-herpesvirus that infects 80–90 % of the world’s population

and it can cause severe and even fatal diseases in immunocompromised patients and it is also responsible for birth

defects as a consequence of congenital infection. Aim of this review is to discuss the existing data regarding the

role of TLRs in HCMV concentrating mainly on TLR4. A better understanding in this relationship could be ex-

ploited for the development of efficient early diagnosis methodologies and anti viral therapies.
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Human cytomegalovirus. Human cytomegalovirus

(HCMV) is a ubiquitous and widespread herpesvirus

which infects the majority of the population during ear-

ly childhood and establishes a lifelong relationship with

its host as a latent virus [1]. Diseases can result from either

primary infection or reactivation from latency. Although

primary infection of healthy individuals is usually asym-

ptomatic, it can cause birth defects following congenital

infection or lead to severe and even fatal diseases in

«at-risk» categories of individuals, such as transplant

patients, HIV-infected subjects and patients with can-

cer [2–7].

Moreover HCMV has been associated also to other

diseases such as tumors, atherosclerotic processes, car-

diovascular pathologies and autoimmune diseases [4,

8–10]. The association of HCMV to such a broad range

of clinical features is supported by its ability to infect

many cell types in vivo including different immune sys-

tem effectors, such as myeloid progenitors, dendritic

cells, monocytes and macrophages [5, 11–13]. In parti-

cular the monocyte-macrophage system represents not

only an important site of latency (monocytes) but also a

way exploited by the virus to disseminate into host tis-

sues (macrophages) [14, 15]. Another striking characte-

ristic of HCMV is its prominent capacity to counteract

host defense mechanisms, mainly by interfering with

intracellular signalling and inducing the transcription

of cellular genes involved in the modulation of innate

immunity, the inhibition of apoptosis and the cell cycle

regulation [16–21]. A great number of cellular func-

tions exploited by HCMV are often connected with the

activation of Toll-Like Receptor (TLR)-mediated inna-

te immunity. TLRs are the main class of immune-sen-

sor molecules for the recognition of a broad range of pa-

thogens. In particular, the TLR involvement in viral in-

fections has been described both for DNA and RNA

viruses [22–28]. Aim of this review is to provide useful

information about the state of the art concerning the

TLR involvement in HCMV infection focusing particu-

lar on TLR2 and TLR4.

An overview on Toll like receptors and HCMV

infection. Toll-like receptors (TLRs) are transmemb-
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rane proteins that play a crucial role in the activation of

the immune system. The recognition of pathogens asso-

ciated molecular patterns (PAMPs) of specific patho-

gens activates the TLR mediated signalling cascade that

transduces the signal to the nucleus provoking several

effects, such as the NF-�B activation, the production of

inflammatory cytokines, the maturation of dendritic

cells, the enhancement of the production of co-stimula-

tory molecules involved in the immunitary response

and the production of type I interferon (�, �, �) [18, 29,

30]. The TLRs were firstly characterized for their abi-

lity to recognize bacterial components but nowadays it

is well known their ability to interact also with viral and

fungal molecules [31]. Concerning the TLRs involve-

ment in HCMV infection the amount of data is still in-

creasing but the first evidence that HCMV activates in-

nate immunity in a TLR-dependent manner was obtai-

ned for TLR2 [18]. The stimulation of TLR2 by HCMV

is replication-independent and results in the activation

of NF-�B and the release of inflammatory cytokines wi-

thout affecting the IFN pathway [32]. The direct demon-

stration that HCMV interacts with the dimer TLR2/

TLR1 was obtained firstly by Boheme and colleagues

who demonstrated its interaction with the HCMV enve-

lope glycoproteins gB and gH and the consequent NF-

�B activation and cytokine secretion [22]. Chan and

Guilbert have also demonstrated the significance of

TRL2 in the immunopathogenesis of HCMV infection,

reporting that UV-inactivated virions stimulate apop-

tosis in syncytiotrophoblast-like cells in a TLR2-depen-

dent manner, likely contributing to chronic villitis and

disruption of syncytiotrophoblasts, which often deve-

lop in placentas on delivery of newborns with conge-

nital HCMV [33, 34].

Nowadays several studies are concentrating on the

role played by TLR sequence single nucleotide poly-

morphism (SNPs) especially connected to the suscepti-

bility to HCMV infection and the derived clinical seque-

lae. Data from studies conducted on other pathogens,

such as rubella, measles and hepatitis B, suggest that

SNPs in immune response genes may influence severity

of infections and response to vaccinations [35–41]. So

far, TLR gene polymorphisms were broadly investiga-

ted focusing on their effects on the immune response

against various pathogens including hepatitis C virus

(HCV), Legionella pneumophila, Plasmodium falcipa-

rum, Mycobacterium leprae, Mycobacterium tuberculo-

sis as well as HCMV [42–44]. Many studies also show-

ed the involvement of different TLR SNPs in the course

of inflammatory diseases and the altered expression of

TLR-dependent immune response genes [45–48].

Concerning HCMV infection there are data suppor-

ting a connection between clinical evidences and TLR2

sequence – SNPs; in fact, in liver transplant recipients

who carry the homozygous Arg753Gln mutation of

TLR2, a higher incidence of HCMV-related disease was

shown[49, 50]. This observation derived from clinical

cases has been investigated by in vitro studies which

showed that cells with the same mutation in TLR2 gene

fail to recognize HCMV gB. This impaired viral recog-

nition might prevent the development of a ro bust antivi-

ral immune response, resulting in symptomatic disease

in immunocompromised transplant recipients [51]. On

the contrary, the heterozygosity for the TLR2 Arg677Trp

SNP is significantly associated with a lower risk of

HCMV infection in adults [52].

As described above there are several literature data

demonstrating a direct involvement of TLR2 in the

HCMV infection. Recently an increasing number of

studies is focusing on the role of TLR4 in the HCMV in-

fection and there is a big amount of data that describe

its involvement at different stages. However, TLR4 does

not seem directly involved in HCMV recognition, but

its inhibition in THP-1 monocytic cell line-derived mac-

rophages leads to a decreased rate of infection [53],

while TLR4 ligands enhance the ability of dendritic cells

to pre sent HCMV antigens leading to an increased num-

ber of both CD4- and CD8-positive antigen-specific acti-

vated T cells [54].

TLR4 mediated response to HCMV. One of the

first evidence of the potential involvement of TLR4 in

HCMV infection was given in 2007 by Harwani and

colleagues who evaluated the effect of bacterial lipopo-

lysaccharide (LPS), the prototype TLR4 ligand, on

HCMV replication in foreskin fibroblasts (HFF), a clas-

sical in vitro model of HCMV infection [55] and in ec-

tocervical tissue explants, where HCMV replicates [56].

They demonstrated that treatment of HFF and ectocervi-

cal tissue explants with LPS significantly inhibits HCMV

infection and that interferon beta (IFN�) contributes to

this anti-HCMV effect [57]. This is an important proin-

flammatory cytokine that derives from the downstream
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signalling of TLR4 as well as IL-6 and IL-8 [58, 59].

TLR4 signalling is activated after the recognition of a li-

gand which stimulates the engagement of two distinct

TIR domain-containing adaptor proteins by the TLR4

conserved cytoplasmic domain: TIRAP (also known as

Mal), which recruits MyD88 and TRAM (also called

TICAM2 or TIRP), which in turn recruits TRIF [60].

The MyD88-TIRAP (MyD88 dependent) complex acti-

vates TRAF6 via IRAK kinases, whereas the TRAM-

TRIF (MyD88 independent) module recruits RIP1 or

TRAF6 [58]. TLR4 is known to interact with two co-

receptors (CD14 and MD-2) for the recognition of li-

gands. They stabilize the TLR4 expression on the cell

surface following engagement of TLR4 with LPS and

the TLR4/MD2/CD14 complex initiates and regulates

additional downstream signalling via TRAF6 in a

TIRAP dependent pathway, which in turn induces IL-6

and IL-8 [61–65]. Nevertheless, little is known about the

mechanism by which the components of the TLR4/MD2/

CD14 complex mediate such effects in monocytes when

TLR4 signalling is induced by HCMV. A study from

Yew at al described that HCMV induces THP-1 cells (a

monocytic cell line) signalling via this protein comp-

lex, suggesting that HCMV is able to activate TLR4 sig-

nalling and mediate cytokine induction [66]. Moreover

they also showed that TRAM signalling was notable

only with impaired TIRAP activity, thus possibly repre-

senting an «alternative» signalling route. This alterna-

tive pathway signalling also appears to increase activa-

tion of IFN-inducible genes via the TRAM-TRIF path-

way, shifting from the canonical IL-6/IL-8 response to

an IFN�dominant response. They further observed that

IL-6 induction by TLR4/MD2 is required for CD14 ac-

tivation [66]. These pro-inflammatory cytokines them-

selves appear to play an important role in the pathogene-

sis of HCMV after bone marrow transplantation and can be

useful predictors for HCMV infection and disease [67].

HCMV has also been demonstrated to be able to in-

duce the transcription of several TLRs, and among

them there is also TLR4 [53].

Beyond the classical function related to the innate

immunity of the TLRs, TLR3, TLR4 and TLR5 have be-

en described to have a function related to the regulation

of the cell cycle [68, 69]. HCMV is known to modify the

cell cycle in different cell types [19, 70–75], however,

only the inhibition of the TLR4 signalling pathway

leads to a reduction of this effects in THP-1 monocytes-

derived macrophages [53] demonstrating that TLR4 is

a mediator of HCMV-initiated cell cycle activation in

THP-1 macrophages.

As already explained for TLR2, also polymorphisms

in TLR4 gene have been reported to be associated with

an altered immune response to pathogens. Arbour et al.

discovered two polymorphisms in TLR4 gene, 1063 A >

G and TLR4 1363 C > T, that result in amino acid substi-

tutions, Asp299Gly and Thr399Ile, in the extracellular

domain of the receptor with functional consequences

[76]. In particular, these variants, lead to a blunted im-

munologic response to LPS and to a lower levels of pro-

inflammatory cytokines production, acute phase reac-

tants and soluble adhesion molecules [76, 77]. More-

over they have been reported to be associated with a

higher susceptibility to infections caused by gram-nega-

tive bacteria [78, 79], Candida albicans [80], Brucella

species [81], respiratory syncytial virus [82] and P. fal-

ciparum [83].

Clinical studies on renal transplant recipient patients

determined that in patients heterozygous or homozygo-

us for both of these polymorphisms or for only one of

them there are not only more severe bacterial and oppor-

tunistic infections but also higher rates of HCMV di-

seases [24]. There are also other indirect proofs of the

potential involvement of these polymorphisms in the

HCMV infection. In fact, they were also studied for

their role in the invasive aspergillosis (TLR4 is a recep-

tor for Aspergillus species [84]) in allogenic hemato-

poietic-stem cell transplant patients [85]. It has been

shown that they are related to an increased risk of

invasive aspergillosis but no direct association in this

respect was found: however, TLR4 SNPs were sugges-

ted to be associated with HCMV seropositivity, as the

seropositivity for HCMV is another risk factor for in-

vasive aspergillosis. Instead, interestingly, a more re-

cent study showed that heterozygosity for the TLR4

Asp299Gly polymorphism was detected primarily in

non-infected individuals and was associated with a low-

er level of viraemia and could be a protective factor for

HCMV infection [52].

Conclusions. The knowledge of innate immunity

response to HCMV is still incomplete but the number

of data about this topic is continuously increasing.

Indeed, it is well known that a better understanding of
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the molecular events driving HCMV infection and the

host immune response mechanisms to this relevant pa-

thogen could be fundamental for the development of ef-

ficient therapies, avoiding symptomatic reactivations

from latency in «at risk» subjects.

In this respect the role of TLRs is being largely in-

vestigated as they are one of the main families of innate

immunity receptors and very early «sentinels» to pa-

thogen invasion. The proofs of their involvement in

HCMV infection are increasing, especially for TLR2

and more recently, TLR4. At the present time, the data

available show that they could be concurrently invol-

ved in the direct HCMV recognition, the derived intra-

cellular signalling and the HCMV induced modulation

of cellular metabolism (in particular, the alteration of

the cell cycle).

A wider knowledge of TLR mediated response

could be usefully exploited also to develop efficient

screening methodologies and find reliable prognostic

markers, especially in the case of HCMV congenital

infections and transplant patients diseases. To this

regard, the study of the role of TLR sequence SNPs

seems very promising.

Âçàºìîçâ’ÿçîê ì³æ çì³íàìè TLR4 ñèãíàë³íãó ³ åôåêòèâí³ñòþ

çàðàæåííÿ öèòîìåãàëîâ³ðóñîì ëþäèíè

Ä. Æåðì³í³, Ì. Ñ. Àðêàíãåëåòò³

Ðåçþìå

Toll-ïîä³áí³ ðåöåïòîðè (TLR) ÿê îñíîâíèé êëàñ ìîëåêóë ³ìóííèõ

äàò÷èê³â, ùî ðåãóëþþòü ñèãíàëüí³ øëÿõè âðîäæåíîãî ³ìóí³òåòó,

òàêîæ áåðóòü ó÷àñòü ó çàðàæåíí³ ð³çíèìè ÐÍÊ- ³ ÄÍÊ-â³ðóñàìè,

ç-ïîì³æ ÿêèõ â³ðóñè ãåðïåñó. Öèòîìåãàëîâ³ðóñ ëþäèíè – øèðîêî

ðîçïîâñþäæåíèé áåòà-ãåðïåñâ³ðóñ ëþäèíè, ¿ì çàðàæàåíî ïðè-

áëèçíî 80–90 % íàñåëåííÿ çåìíî¿ êóë³, ùî ïðèçâîäèòü äî ñåðéîç-

íèõ ³ íàâ³òü ñìåðòåëüíèõ çàõâîðþâàíü ó ïàö³ºíò³â ç ³ìóíîäåô³-

öèòîì òà º ïðè÷èíîþ ñïàäêîâèõ ïàòîëîã³é ÷åðåç âðîäæåí³ ³íôåê-

ö³¿. Ìåòà öüîãî îãëÿäó ïîëÿãàº â îáãîâîðåíí³ ³ñíóþ÷èõ äàíèõ ùîäî

ðîë³ TLR, ³ îñîáëèâî TLR4, â öèòîìåãàëîâ³ðóñí³é ³íôåêö³¿. Êðàùå

ðîçóì³ííÿ öüîãî ìîæå áóòè âèêîðèñòàíî äëÿ ðîçðîáêè åôåêòèâ-

íèõ ìåòîäèê ðàííüî¿ ä³àãíîñòèêè ³ ïðîòèâ³ðóñíèõ ïðåïàðàò³â.

Êëþ÷îâ³ ñëîâà: öèòîìåãàëîâ³ðóñ ëþäèíè, Toll-ïîä³áí³ ðåöåï-

òîðè, âðîäæåíà ³ìóííà â³äïîâ³äü.

Âçàèìîñâÿçü ìåæäó èçìåíåíèÿìè TLR4 ñèãíàëèíãà è

ýôôåêòèâíîñòüþ çàðàæåíèÿ öèòîìåãàëîâèðóñîì ÷åëîâåêà

Ä. Æåðìèíè, Ì. Ñ. Àðêàíãåëåòòè

Ðåçþìå

Toll-ïîäîáíûå ðåöåïòîðû (TLR) êàê îñíîâíîé êëàññ ìîëåêóë èì-

ìóííûõ äàò÷èêîâ, ðåãóëèðóþùèõ ñèãíàëüíûå ïóòè âðîæäåííîãî

èììóíèòåòà, ó÷àñòâóþò òàêæå â çàðàæåíèè ðàçëè÷íûìè ÐÍÊ-

è ÄÍÊ-âèðóñàìè, âêëþ÷àÿ âèðóñû ãåðïåñà. Öèòîìåãàëîâèðóñ ÷åëî-

âåêà – øèðîêî ðàñïðîñòðàíåííûé áåòà-ãåðïåñâèðóñ ÷åëîâåêà, èì

çàðàæàåíî ïðèìåðíî 80–90 % íàñåëåíèÿ çåìíîãî øàðà, ÷òî ïðè-

âîäèò ê ñåðüåçíûì è äàæå ñìåðòåëüíûì çàáîëåâàíèÿì ó ïàöèåí-

òîâ ñ èììóíîäåôèöèòîì è ÿâëÿåòñÿ ïðè÷èíîé íàñëåäñòâåííûõ

ïàòîëîãèé èç-çà âðîæäåííîé èíôåêöèè. Öåëü ïðåäñòàâëåííîãî îá-

çîðà ñîñòîèò â îáñóæäåíèè ñóùåñòâóþùèõ äàííûõ î ðîëè TLR, è

îñîáåííî TLR4, â öèòîìåãàëîâèðóñíîé èíôåêöèè. Ëó÷øåå ïîíèìà-

íèå ýòîãî ìîæåò áûòü èñïîëüçîâàíî äëÿ ðàçðàáîòêè ýôôåêòèâ-

íûõ ìåòîäèê ðàííåé äèàãíîñòèêè è ïðîòèâîâèðóñíûõ ïðåïàðàòîâ.

Êëþ÷åâûå ñëîâà: öèòîìåãàëîâèðóñ ÷åëîâåêà, Toll-ïîäîáíûå

ðåöåïòîðû, âðîæäåííûé èììóííûé îòâåò.
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