Структурні та функціональні особливості аспарагінових протеаз базидіоміцетів

Автор(и)

  • В. В. Сакович Поліський державний університет 23, Дніпровська флотилія, Пінськ, Республіка Білорусь, 225710 Автор

DOI:

https://doi.org/10.7124/bc.000A2A

Ключові слова:

протеолітичні ферменти, фізичні і хімічні властивості

Анотація

Величезне різноманіття грибних протеаз та специфіка їхньої дії широко використовуються завдяки їхнім фізіологічним та біотехнологічним властивостям. Ці ферменти використовуються в біотехнології, головним чином у харчовій, шкіряній промисловості, у виробництві миючих засобів, в процесах екологічної біоремедіації та для отримання терапевтичних пептидів, що знаходять застосування в якості медичних препаратів. Цей огляд охоплює різні аспекти аспарагінових протеаз базидіоміцетів, включаючи джерела іх отримання, продукцію, структурні особливості, фізико-хімічні властивості та їхне різноманітне застосування.

Посилання

Germano S, Pandey A, Osaku CA. Characterization and stability of proteases from Penicilliumsp. produced by solid-state fermentation. EnzymMicrob Technol. 2003; 32:246-51.

Rawlings ND, Barrett AJ. Evolutionary families of peptidases. Biochem J.1993;290 (Pt1):205-18.

Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol. 1998; 62: 597-635.

Sumantha A, Larroche C, Pandey A. Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol. 2006; 44 (2): 211-20.

Palmieri G, Bianco C, Cennamo G, Giardina P, Marino G, Monti M, Sannia G. Purification, characterization, and functional role of a novel extracellular protease from Pleurotusostreatus. Appl Environ Microbiol. 2001; V. 67: 2754-59.

Faraco V, Palmieri G, Festa G, Monti M, Sannia G, Giardina P. A new subfamily of fungal subtilases: structural and functional analysis of a Pleurotus ostreatus member. Microbiology. 2005;151(Pt 2):457-66

Shin HH, Choi HS. Purification and characterization of cysteine protease from Pleurotusostreatus. Biosci Biotechnol Biochem. 1998; V. 62: 1416-18.

Denisova NP. Nature and biological role of basidial fungi proteinases. Mycol Phytopathol. 1984; 18: 116-21.

Terashita T, Inoue T, Nakaie Y, Yoshikawa K, Shishi- yama J. Isolation and characterization of extra- and intra-cellular metal proteinases produced in the spawnrunning process of Hypsizygusmarmoreus. Mycoscience. 1997; 38: 243-45.

Morozova EN, Falina NN, Denisova NP, Barkova LV, Psurtseva NV, Samartsev MA, Shitova VA. Analysis of the component composition and substrate specificity of a fibrinolytic drug from the fungus Flammulinavelutipes. Biokhimia. 1982; 47: 1181-85.

Choi HS, Sa YS. Fibrinolytic and antithrombotic protease from Ganodermalucidum. Mycologia. 2000;92(3):545-52.

Terashita T, Oda K, Kono M, Murao S. Purification and some properties of metal proteinases from Lentinusedodes. Agric Biol Chem. 1985; 49(8):2293-300.

Dohmae N, Hayashi K, Miki K, Tsumuraya Y, Hashimo Y. Purification and characterization of intracellular proteinases in Pleurotusostreatus fruiting bodies. Biosci Biotechnol Biochem. 1995; 59:2074-80.

Choi HS, Shin HH. Purification and partial characterization of a fibrinolytic protease in Pleurotusostreatus. Mycologia. 1998; 90:674-79.

Kobayashi H, Kasamo K. Crystallization and preliminary X-ray diffraction studies of aspartic proteinase from Irpexlacteus. J Mol Biol. 1992; 226:1291-93.

Kobayashi H, Kusakabe I, Murakami K. Purification and characterization of a pepstatin-insensitive carboxyl proteinase from Polyporustulipiferae (Irpexlacteus). Agric Biol Chem 1985; 49(8):2393-7.

Palmieri G, Bianco C, Cennamo G, Giardina P, Marino G, Monti M, Sannia G. Purification, characterization, and functional role of a novel extracellular protease from Pleurotusostreatus. Appl Environ Microbiol. 2001; 67(6):2754-59.

Akhmedova ZR. Cellulolytic, xylanolitic and lignolytic enzymes of the fungus Pleurotusostreatus. Prikl Biochim Microbiol. 1994; 30:42-8.

Denisova NP. Proteolytic enzymes of basidial fungi, taxonomic and ecological aspects of their study. Thesis Doc Biol sci. 1991; 31.

Veerapandian B, Cooper JB, Sali A, Blundell TL, Rosati RL, Dominy BW, Damon DB, Hoover DJ. Direct obser-vation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinase. Protein Sci. 1992;1(3) 322-8.

Andreeva NS, James MN. Structure and function of aspartic proteinases. N.Y.: Plenum Press. 1992; 39-45.

Antonov VK, Ginodman LM, Rumsh LD, Kapitannikov YV, Barshevskaja TN, Yavashev LP, Gurova AG, Volkova LI. Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. Eur J Biochem. 1981; 117:195-200.

Davies DR.The structure and function of the aspartic proteinases. Annu Rev Biophys Chem. 1990; 19:189-215.

Andreeva NS, Rumsh LD. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Science. 2001; 10(12):2439-50.

Piana S, Carloni P. Impact of genetic variation on three dimensional structure and function of proteins. Proteins: Structure, Function, Genetic. 2000; 39:26-36.

Avtonomova AV, Krasnopol'skaia LM, Maksimov VN. [Optimization of nutrient medium for submerged cultivation of Ganoderma lucidum (Curt.: Fr.) P. Karst]. Mikrobiologiia. 2006;75(2):186-92. Russian.

Kalizs HM, Wood DA, Moore D. Production, regulation and release of extracellular proteinase activity in basidi-omycete fungi. Trans Br Mycol Soc. 1987; 88:221-227.

Dunaevsky YE, Matveeva AR, Belyakova GA, Belozersky MA. Degradation of protein substrates by xylotrophicba-sidiomycetes. Microbiology. 2006; 75:46-51.

Claverie-MartÌn F, Vega-Hernàndez MC, Aspartic proteases used in cheese making. Industrial Enzyme. 2007: 207-19.

Van SSC, Warnock NI, Schmidt S. Aspartic acid protease from Botrytis cinerea removes haze-forming proteins during white winemaking. J Agricult Food Chem. 2013; 61, 40, 9705–11.

Jacob M, Jaros D, Rohm H. Recent advances in milk clotting enzymes. Int J Dairy Technol. 2011; 64 (1):14-33.

Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial pro-teases. Microbiol Mol Biol Rev. 1998; 62(3):597-63.

Theron LW, Divol B. Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol. 2014; 98(21):8853-68.

Cutfield SM, Dodson EJ, Anderson BF. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure. 1995; 3(11):1261-71.

Kobayashi H, Kim H. Characterization of aspartic proteinase from basidiomycete, Laetiporus sulfureus. Food SciTechnol Res. 2003; 9:30-34.

Gershkovich AA, Kibirev VK. Khromogennye i fluorogennye peptidnye substraty proteoliticheskikh fermentov [Chromogenic and fluorogenic peptide substrates of proteolytic enzymes]. Bioorg Khim. 1988;14(11):1461-88. Russian.

D'jakonova GV. The study of some physico-chemical properties of milk-clotting enzymes of oyster mushroom. 03.01.04 VAK RF, Kazan state University, Rostov-on-don. 2010; 44.

Lebedeva G, Proskuryakov M. Purification and characterization of milkclotting enzymes from oyster mushroom (Pleurotusostreatus (Fr.) Kumm). Applied Biochemistry and Microbiology. 2009; 45(6):623-625.

Dmitrieva TA, Kolesnikov BA, Shamtsyan MM. Screening of producers of milk-converting enzymes among cultures of higher basidiomycetes. Nat tech Sci. 2009; 3(41):145-7.

Chemerys OV, Boyko MI. The milk coagulating activity of some basidial wood-destroying fungi. Donetsk readings. 2016; 229-32.

Sakovich, VV, Grusha AM, Zhernossekov DD.Guidelines for obtaining a drug with milk-clotting activity from Pleurotusostreatus.Vet J Belarus. 2018; 63-67.

Sakovich VV, Stohniy YM, Zhernossekov DD, Rebriev AV, Korolova DS, MarunychRYu, Chernyshenko VO.Metalloprotease from the cultural liquid of Pleurotusosreatus. Biotechnologia Acta. 2019; 12(6):35-45.

Kudryavtseva OA, Dunaevsky YE, Kamzolkina V, Belozersky MA. Proteolytic enzymes of fungi: features of extracellular proteases of xylotrophicbasidiomycetes. Microbiology. 2008; 77:725-37.

Chemeris OV, Rashevsky VV, Boyko MI. Milk-curdling activity of some basidial wood-destroying fungi. Problems of ecology and nature protection of the technogenic region. 2016; 1(2):77-82.

Shpirnaya IA, Shlyapnikova SV, Tsvetkov VO, Ibragimov RI. Milk-clotting activity of basidial fungi enzymes. Reports of the Bashkir University. 2016; 1(1):63-67.

ShlyapnikovaSV, BatyrovaER, TsvetkovVO, ShpirnayaIA.The study of milk clotting activity of the enzymes of bracket-fungus. Proceedings of the Ufa scientific center of the Russian Academy of Sciences. 2017; 3(1):228-232.

Shlyapnikova SV, Batyrova ER. Features of milk coagulation: rennet enzyme preparation and its analogues. BIOmics. 2017; 9(1):33-41.

Belova NV, Shamolina II. Some promising areas of biotechnology of basidiomycetes. Mycol Phytopathol. 2013; 47(2):73-82.

Sorokin SS. Tromboliticaskie and fibrinolytic properties of basidiomycetes. Traditions and Innovations. 2017; 270.

Efremenkova OV. Antibiotics for basidial fungi. Advances in medical Mycology. 2018; 18:240-5.

Tsivileva OM, Perfileva AI, Pavlova AG. Antibacterial potential of a biomaterial of fungal origin with a low content of biometals. Methods of computer diagnostics in biology and medicine. 2018;153-6.

Завантаження

Опубліковано

2020-04-30

Номер

Розділ

Огляди