Structural features of 6-azacytidine and its derivatives: data of NMR and IR spectroscopies

Authors

  • S. P. Samijlenko Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • I. V. Alexeeva Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • L. H. Palchykivs'ka Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • I. V. Kondratyuk Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • A. V. Stepanyugin Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • A. S. Shalamay Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • D. M. Hovorun Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author

DOI:

https://doi.org/10.7124/bc.0004A5

Abstract

Study of 6-azaCyt, 6-azaC, a number of their derivatives and related compounds was conducted by IR and NMR spectrocsopies. Doublet splitting of amino group signal in NMR spectra of 6-azaCyt (unlike the cases of canonical base Cyt, nucleosides C and dC under the same experimental conditions) indicates nonequivalency of amino protons caused by greater asymmetry of electron structure which increases on ring substitutions at the 1 and 5 positions and increased barrier of amino group rotation. The dow field component of the doublet is only responsive to the 5-methyl substitution, as probably related to the involvement one of amino protons into an intramolecular H-bond with the N3 atom. Inverse (as compared to Cyt) specificity of interactions of 6-zaCyt with the amino acid carboxylic group and carboxylate-ion in anhydrous DMSO has been shown. The spectroscopy data support the conclusion that investigated compounds with nonsubstituted amino group exist as keto-amino tautomers in DMSO and solid state.

References

?koda J. Mechanism of Action and Application of Azapyrimidines. Prog Nucleic Acid Res Mol Biol. 1963;197–219.

Chernetskii VP, Alekseeva IV. Anomalous nucleosides. VII. Symthesis of 6-azacitidine and its derivatives. Khim Geterotsikl Soed. 1967;(6):1109-13.

Shalamai AS, Ognyanik SS, Alekseeva IV, Goncharenko VS.Process for the preparation of 6-aza cytidine. Pat. Ukraine UA 1785.29.10.93.. BI. N 3, 25.10.94.

Petrusha NA. Anticancer properties of some anomalous nucleosides: Author. Dis. ... PhD. biol. Sciences. Kiev, 1969. 15 p.

Bektemirov TA, Lintskaia GL, Chernetskii VP, Galegov GA. The inhibiting effect of 6-azacytidine on reproduction of smallpox virus in tissue culture. Vopr Med Khim. 1974;20(1):50-1.

Galushko SV, Bulkina ZP, Petrusha NA, Shishkina IP. Pharmacokinetics of 6-azacytidine. Pharmaceutical Chemistry Journal. 1986;20(11):753–5.

Petrusha NA. Toxico-pharmacological properties of 6-azacytidine. Farmakol Toksikol. 1987;50(2):75-6.

Nosach LN, Diachenko NS, Butenko SI et al. Effect of 6-azacytidine for expression adenoviral genome. New approaches to chemotherapy of viral infections. Riga: Zinatne, 1991: 87-93.

Nosach LN, Dyachenko NS, Shalamay AS, Alekseeva IV, Kushko LYa, Ozvinchuk II, Zhovnovataya VL, Butenko SL, Petrovskaya IA, Drannik GN. Antiadenovirus and immunostimulating actions of 6-azacylidine. Biopolym. Cell. 1996;12(1):75-85.

Skrypal' IH, Onyshchenko AM, Tokovenko IP, Malynovs'ka LP, Panchenko LP, Havrylko LO, Shalama? AS, Aleksieieva IV. The validation of the possible use of monosugars and 6-azacytidine for the elimination of Mollicutes associated with HIV/AIDS from the human urogenital tract. Mikrobiol Z. 1996;58(5):80-5.

Alexeeva IV, Palchikovskaya LI, Shalamay AS, Tarnavsky SS, Nosach LM, Zhiovnovataya VI, Dyachenko NS. N4-deriva tives of 6-azacytidine: synthesis and biological activity. Biopolym Cell. 1997; 13(4):285-90.

Gut J, Jonas J, Pi?ha J. Nucleic acid components and their analogues. XLIX. Tautomeric structure of 6-azacytosine and its derivatives. Collect Czechoslov Chem Commun. 1964;29(6):1394–400.

Alekseeva IV, Pal’chikovskaya LI, Shalamai AS, Ognyanik SS, Morgart NV, Petrusha NA. Synthesis of N1-substituted 6-azacytosines and their biological activity. Pharmaceutical Chemistry Journal. 1994;28(4):227–30.

Dashevskaya TA, Shalamai AS. Synthesis of 2'Desoxy-6-azacytidine. Ukr. Khim Zh. 1992; (7):583-5.

Alekseyeva IV, Sidorov GV, Shalamay AS, Tarnavskiy SS, Myasoyedov NF, Koval' NM, Chernetskiy VP. Synthesis of tritium-labeled 6-azauridine, and 6-azacytidine. Molecular biology techniques: Sb. nauch. tr. Kiyev: Nauk. dumka, 1986:52–8.

Zheltovsky NV, Samoilenko SA, Kolomiets IN, Kondratyuk IV, Stepanyugin AV. Interactions of methyl and glycosyl derivatives of pyrimidine nucleotide bases with amino acid carboxylic group. Biopolym Cell. 1994; 10(6):45-51.

Zheltovskiy NV, Samoylenko SA, Kolomiets IN, Kondratiuk IV. Interaction of nucleobases with the amino acids carboxyl grouP in DMSO: a model of Point Protein-nucleic contacts. Doklady Akad Nauk Ukr SSR. Ser B. 1988; (8):68-71.

Zheltovsky NV, Samoilenko SA, Gubaidullin MI, Kondratyuk IV. Vibrational spectrum and structure of the cytosine complex with N-formyl glycine in the solid phase. Doklady Akad Nauk Ukr SSR. Ser B. 1988; (5):75-8.

Kondratyuk IV, Kolomiets IN, Samoilenko SA, Zheltovsky NV. A study of complexes between cytosine bases and amino acid carboxylic group by NMR spectroscopy. Biopolym Cell. 1989; 5(6):21-25.

Govorun DN, Mishchuk YaR, Zheltovsky NV. Low-frequency phonon raman spectra of nucleic acid constituents: pyrimidine bases. Biopolym Cell. 1990; 6(3):31-9.

Govorun DN, Mishchuk YaR, Zheltovsky NV. Low-frequency raman spectra of some methylated components of nucleic acisds: 1-methyl derivatives of pyrimidine bases. Biopolym Cell. 1991; 7(1):55-62.

Govorun DM, Kondratyuk IV, Mishchuk YaR, Zheltovskyi MV. The nonequavalence of amine hydrogens in canonical nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1995; (8):130-2.

Govorun DM, Kondratyuk IV. Anisotropic rotation of amino groups in canonical nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1996:(10):151-4.

Govorun DM, Mishchuk YaR, Kondratyuk IV, Zheltovsky MV. Intramolecular cooperative hydrogen bonds in nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1996;(8):141-4.

The chemistry of the amino group. Ed. S. Patai. Ixmdon; New York; Sydney: Intersc. Publ., 1968. 253 p.

Orville-Thomas WJ, Parsons AE, Ogden CP. NH2-stretching frequencies in primary amines. J Chem Soc. 1958;1047-9.

Krueger PJ. The vibrational mechanism of the fundamental NH 2 stretching vibrations in anilines. Can J Chem. 1962;40(12):2300–16.

Iogansen AV. Fermi resonance and N (AH) band structure in complexes with hydrogen bond. Optika i spektroskopiya. Leningrad: Nauka, 1967;228-31.

Zhukova EL, Shmanko II. Effect of Hydrogen Bonding on the Vibrations of the NH2 Group. I: Frequencies of Valence Vibrations. Optika i spektroskopiya. 1968; 25(4): 500—505.

Zhukova EL, Shmanko II. Effect of Hydrogen Bonding on the Vibrations of the NH2 Group. II: Intensities of Valence Vibration Bands. Optika i spektroskopiya. 1969; 26(4): 532.

Zhukova EL, Shmanko II. Effect of Hydrogen Bonding on the Vibrations of the NH2 Group. III. Internal deformation vibration. Optika i spektroskopiya. 1972; 32(3):514.

Iogansen AV, Rassadin BV, Bochkareva MN, Dorokhov VA, Mikhailov BM. Hydrogen bonds and Fermi resonance in the infrared spectra of (3-aminopropyl)dibutylborane with bases. J Appl Spectrosc. 1971;15(6):1616–22.

Wolff H, Mathias D. Hydrogen bonding and Fermi resonance of aniline. J Phys Chem. 1973;77(17):2081–4.

Wolff H, Hagedorn W. Hydrogen bonding and Fermi resonance of mixed adducts of aniline. the behavior of NH2 deformation vibrations. J Phys Chem. 1980;84(18):2335–7.

Denisov GS, Kuzina LA, Smolyanskii AL. Infrared spectra and energetics of complexes of nonafluoro-tert-butylamine with proton acceptors. J Appl Spectrosc. 1988;48(3):280–4.

Denisov GS, Kuzina LA, Smolyanskii AL, Furin GG. Nonadditivity of the energies of hydrogen bonds of fluorinated aromatic amines with proton acceptors. J Appl Spectrosc. 1990;52(3):322–7.

Govorun DN, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Radomsky NF, Zheltovsky NV. Mirror symmetrical conformational states of canonical nucleic acid bases. Doklady Akad Nauk Ukrainy. 1992; (2):66-9.

Govorun DM, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Zheltovsky MV. About nonplanarity and dipole nonstability of canonical nucleotide bases methylated at the glycoside nitrogen. Dopovidi Nats Akad Nauk Ukrainy. 1995; (6):117-9.

Hovorun DM, Mishchuk YaR, Kondratyuk IV. On a quantum-chemical nature of a stereochemical nonrigidity of canonical nucleotide bases. Biopolym Cell. 1996; 12(5):5-12.

Hovorun DM, Mishchuk YaR, Kondratyuk IV. Topological features of potential energy hypersurface of canonical nucleotide bases. Biopolym Cell. 1996; 12(5):13-7.

Hovorun DM. A structural-dynamic model on spontaneous semiopen states in DNA. Biopolym Cell. 1997; 13(1):39-45.

Govorun DM, Mischuk YaR, Kondratyuk IV, Zheltovs'kyi MV. Dynamic stereo isomerism of Watson-Crick nucleotide base pairs. Dopovidi Nats Akad Nauk Ukrainy. 1995;(11):121-3.

Kwiatkowski JS, Leszczy?ski J. Molecular Structure and Vibrational IR Spectra of Cytosine and Its Thio and Seleno Analogues by Density Functional Theory and Conventional ab Initio Calculations. J Phys Chem. 1996;100(3):941–53.

Lapinski L, Nowak MJ, Fulara J, Les A, Adamowicz L. Matrix isolation and ab initio theoretical studies of the IR spectrum of 5-methylcytosine. J Phys Chem. 1990;94(17):6555–64.

Johansen AV. Infrared spectroscopy and spectral determination of the energy of the hydrogen bond. hydrogen bond. M.: Nauka, 1981; 112-55.

Hovorun DM, Kondratyuk IV. Gas-phase acid-alkaline properties of canonical nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1998; (1):207-12.

Hovorun DM, Mischuk YaR. Power intermolecular hydrogen bonds in crystals and spivkrystalizatah DNA bases: a study using spectral calorimetry. Ukr Fiz Zh. 1997; 42(8):933-8.

Samijlenko SP, Kolomiets IM, Kondratyuk IV, Stepanyugin AV. Model considerations on physico-chemical nature of protein-nucleic acid contacts through amino acid carboxylic groups: spectroscopic data. Biopolym Cell. 1998;14(1):47-53.

Kondratyuk IV. Investigation of physico-chemical nature of elementary processes of molecular recognition by NMR, vibrational spectroscopy and computer simulation Kyiv: Ph. D. Thesis, 1996. 19 p.

Samijlenko SP, Kolomiets’ IN, Kondratyuk IK, Stepanyugin AV. Physico-chemical features of complexes modelling recognition of nucleic acid components by amino acids' carboxylic group: data of spectroscopic experiments. Spectroscopy of Biological Molecules: Modern Trends, An­nex. Madrid: Univ. press, 1997:69—70.

Published

1997-11-20

Issue

Section

Structure and Function of Biopolymers