Biopolym. Cell. 1988; 4(2):85-90.
Structure and Function of Biopolymers
Topological characteristics of circular DNA: excluded volume effects
- Institute of Molecular Genetics, Academy of Sciences of the USSR
Moscow, USSR - I. V. Kurchatov Institute of Atomic Energy
Moscow, USSR
Abstract
The Monte Carlo method is used to calculate the probability p of knots formation, the variance of the writhing number <Wr2> and the expansion factor α for a closed polymer chain as a function of its effective diameter d. The results are presented in a form of simple interpolation equations and applied for DNA. The dependence of DNA super-helix energy on its effective diameter is evaluated. Theory predicts significant dependence of the superhelix energy on ionic strength.
Full text: (PDF, in Russian)
References
[1]
Brian AA, Frisch HL, Lerman LS. Thermodynamics and equilibrium sedimentation analysis of the close approach of DNA molecules and a molecular ordering transition. Biopolymers. 1981;20(6):1305-28.
[2]
Yarmola EG, Zarudnaya MI, Lazurkin YuS. Osmotic pressure of DNA solutions and effective diameter of the double helix. J Biomol Struct Dyn. 1985;2(5):981-93.
[3]
Stigter D. Interactions of highly charged colloidal cylinders with applications to double-stranded. Biopolymers. 1977;16(7):1435-48.
[4]
Hagerman PJ. Investigation of the flexibility of DNA using transient electric birefringence. Biopolymers. 1981;20(7):1503-35.
[5]
Kirste RG. Radius of gyration of stiff chain molecules as a function of the chain length and the interactions with the solvent. Discuss Faraday Soc. 1970; 49:51-59.
[6]
Yamakawa H, Stockmayer WH. Statistical Mechanics of Wormlike Chains. II. Excluded Volume Effects. J Chem Phys. 1972; 57(7):2843-2854.
[7]
Webman I, Lebowitz JL, Kalos MH. Excluded-volume expansion of polymer chains: a Monte Carlo study of the scaling properties. Phys Rev B Solid State. 1980. 21(12):5540-5543.
[8]
Slonitskii SV, Frisman EV, Valeev AD, El'iashevich AM. Calculation of the intrinsic viscosity of synthetic and biological polyelectrolytes of various rigidity. Mol Biol (Mosk). 1980;14(3):484-95.
[9]
Manning GS. A procedure for extracting persistence lengths from light-scattering data on intermediate molecular weight DNA. Biopolymers. 1981; 20(8):1751-5.
[10]
Post CB. Excluded volume of an intermediate-molecular-weight DNA. A Monte Carlo analysis. Biopolymers. 1983;22(4):1087-96.
[11]
Vologodskii AV, Anshelevich VV, Lukashin AV, Frank-Kamenetskii MD. Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix. Nature. 1979;280(5720):294-8.
[12]
Le Bret M. Monte Carlo computation of the supercoiling energy, the sedimentation constant, and the radius of gyration of unknotted and knotted circular DNA. Biopolymers. 1980;19(3):619-37.
[13]
Shimada J, Yamakawa H. Ring-closure probabilities for twisted wormlike chains. Application to DNA. Macromolecules. 1984; 17(4):689-698.
[14]
Shimada J, Yamakawa H. DNA-topoisomer analysis on the basis of the helical wormlike chain. Biopolymers. 1984;23(5):853-7.
[15]
Frank-Kamenetskii MD, Lukashin AV, Anshelevich VV, Vologodskii AV. Torsional and bending rigidity of the double helix from data on small DNA rings. J Biomol Struct Dyn. 1985;2(5):1005-12.
[16]
Depew DE, Wang JC. Conformational fluctuations of DNA helix. Proc Natl Acad Sci U S A. 1975;72(11):4275-9.
[17]
Pulleyblank DE, Shure M, Tang D, Vinograd J, Vosberg HP. Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers. Proc Natl Acad Sci U S A. 1975;72(11):4280-4.
[18]
Shore D, Baldwin RL. Energetics of DNA twisting. I. Relation between twist and cyclization probability. J Mol Biol. 1983;170(4):957-81.
[19]
Shore D, Baldwin RL. Energetics of DNA twisting. II. Topoisomer analysis. J Mol Biol. 1983;170(4):983-1007.
[20]
Horowitz DS, Wang JC. Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J Mol Biol. 1984;173(1):75-91.
[21]
Frank-Kamenetskii MD, Vologodskii AV. Topological aspects of the physics of polymers: theory and its biophysical applications. Usp fiz nauk. 1981; 134(4):641-73.
[22]
Vologodskii AV, Lukashin AV, Frank-Kamenetskii MD, Anshelevich VV. Problem nodes in statistical mechanics of polymer chains. Zh Eksp i Teor. Fiziki. 1974; 66(6):2153-2163.
[23]
des Cloizeaux J, Mehta M. L.Topological constraints on polymer rings and critical indices. J Phys Lett. 1979; 40(7):665-70.
[24]
Chen Y-D. Monte Carlo study of freely jointed ring polymers. II. The writhing number. J Chem Phys. 1981; 75(5):2447-53.
[25]
Michels JPJ, Wiegel FW. Probability of knots in a polymers ring. Phys Lett A. 1982; 90(7):381-384.
[26]
White JH. Self-Linking and the Gauss Integral in Higher Dimensions. Amer J Math. 196; 91(5):693-728.
[28]
Spengler SJ, Stasiak A, Cozzarelli NR. The stereostructure of knots and catenanes produced by phage lambda integrative recombination: implications for mechanism and DNA structure. Cell. 1985;42(1):325-34.
[29]
Vologodskii AV, Frank-Kamenetskii MD. Theoretical study of cruciform states in superhelical DNAs. FEBS Lett. 1982;143(2):257-60.
[30]
Frank-Kamenetskii MD, Vologodskii AV. Thermodynamics of the B-Z transition in superhelical DNA. Nature. 1984 Feb 2-8;307(5950):481-2.
[31]
Peck LJ, Wang JC. Energetics of B-to-Z transition in DNA. Proc Natl Acad Sci U S A. 1983;80(20):6206-10.
[32]
Singleton CK, Klysik J, Stirdivant SM, Wells RD. Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature. 1982;299(5881):312-6.
[33]
Singleton CK. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms. J Biol Chem. 1983;258(12):7661-8.
[34]
Nordheim A, Rich A. The sequence (dC-dA)n X (dG-dT)n forms left-handed Z-DNA in negatively supercoiled plasmids. Proc Natl Acad Sci U S A. 1983;80(7):1821-5.