Biopolym. Cell. 1991; 7(2):73-79.
Discussions
Chromosome impriting and hereditary diseases
1Baranov V. S.
  1. Institute of Obstetrics and Gynecology, Academy of Medical Sciences of the USSR
    Leningrad, USSR

Abstract

Current conception of chromosome imprinting as universal mechanism of gene regulation in mammalian ontogenesis is reviewed. The examples of chromosome imprinting at the level of the whole genome (true moles, individual chromosomes (non-random X-chromosome inactivation, isodisomy of autosomes, embryogenesis of aneuploides, non-random loss of maternal chromosomes in embryonic tumors), chromosomal segments and individual genes (Prader–Willi syndrome, Huntington's chorea, Martin–Bell syndrome) are presented. The participation of chromosome imprinting in transgenic animals in functional hemizy-gocity of human genome and aging is briefly outlined. Possible molecular mechanisms of chromosome imprinting (methylation, heterochromatization) are discussed. Application of chromosome imprinting for addressed regulation of parental gene expression and correction of genetic disorders is suggested.

References

[1] Baranov VS. Chromosomal control of early mammalian development. Ontogenez. 1983;14(6):573-89.
[2] Baranov VS. Chromosome imprinting and interchromosomal interactions in early mammalian development. Usp Sovrem Biol. 1988; 105(3):393-405.
[3] Baranov VS. Cytogenetic analysis of genome functions in the early stages of embryonic development of mammals. Usp Sovrem Genet. M: Nauka, 1988:143-83.
[4] Kajii T, Ohama K. Androgenetic origin of hydatidiform mole. Nature. 1977;268(5621):633-4.
[5] Vejerslev LO, Fisher RA, Surti U, Wake N. Hydatidiform mole: parental chromosome aberrations in partial and complete moles. J Med Genet. 1987;24(10):613-5.
[6] Dyban AR, Baranov VS. Cytogenetics of mammalian embryonic development. Oxford: Clarendon press, 1987. 362 p.
[7] Reik W, Surani MA. Cancer genetics. Genomic imprinting and embryonal tumours. Nature. 1989;338(6211):112-3.
[8] Cheung SW, Crane JP, Beaver HA, Burgess AC. Chromosome mosaicism and maternal cell contamination in chorionic villi. Prenat Diagn. 1987;7(8):535-42.
[9] Lyon MF. The William Allan memorial award address: X-chromosome inactivation and the location and expression of X-linked genes. Am J Hum Genet. 1988;42(1):8-16.
[10] Hassold T, Benham F, Leppert M. Cytogenetic and molecular analysis of sex-chromosome monosomy. Am J Hum Genet. 1988;42(4):534-41.
[11] Spence JE, Perciaccante RG, Greig GM, Willard HF, Ledbetter DH, Hejtmancik JF, Pollack MS, O'Brien WE, Beaudet AL. Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet. 1988;42(2):217-26.
[12] Voss R, Ben-Simon E, Avital A, Godfrey S, Zlotogora J, Dagan J, Tikochinski Y, Hillel J. Isodisomy of chromosome 7 in a patient with cystic fibrosis: could uniparental disomy be common in humans? Am J Hum Genet. 1989;45(3):373-80.
[13] McKusick VA. The morbid anatomy of the human genome. Baltimore: Howard Hugh's Med. Inst., 1989; 220 p.
[14] Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989;342(6247):281-5.
[15] Wenger SL, Rauch SD, Hanchett JM. Sister chromatid exchange analysis of the 15q11 region in Prader-Willi syndrome patients. Hum Genet. 1989;83(2):111-4.
[16] Erickson RP. Chromosomal imprinting and the parent transmission specific variation in expressivity of Huntington disease. Am J Hum Genet. 1985;37(4):827-9.
[17] Reik W. Genomic imprinting: a possible mechanism for the parental origin effect in Huntington's chorea. J Med Genet. 1988;25(12):805-8.
[18] Roberts L. Huntington's gene: so near, yet so far. Science. 1990;247(4943):624-7.
[19] Pembrey ME, Winter RM, Davies KE. A premutation that generates a defect at crossing over explains the inheritance of fragile X mental retardation. Am J Med Genet. 1985;21(4):709-17.
[20] Laird C, Jaffe E, Karpen G, Lamb M, Nelson R. Fragile sites in human chromosomes as regions of late-replicating DNA. Trends Genet. 1987;3:274–81.
[21] Hori T, Takahashi E, Tsuji H, Tsuji S, Murata M. Fragile X expression in thymidine-prototrophic and auxotrophic human-mouse somatic cell hybrids under low and high thymidylate stress conditions. Cytogenet Cell Genet. 1988;47(4):177-80.
[22] Bridge PJ, Lillicrap DP. Molecular diagnosis of the fragile X [Fra (X)] syndrome: calculation of risks based on flanking DNA markers in small phase-unknown families. Am J Med Genet. 1989;33(1):92-9.
[23] Mohrenweiser HW. Functional hemizygosity in the human genome: direct estimate from twelve erythrocyte enzyme loci. Hum Genet. 1987;77(3):241-5.
[24] Cattanach BM. Position effect variegation in the mouse. Genet Res. 1974;23(3):291-306.
[25] Reuter G, Giarre M, Farah J, Gausz J, Spierer A, Spierer P. Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature. 1990;344(6263):219-23.