Biopolym. Cell. 2021; 37(1):3-13.
Structure and Function of Biopolymers
PH domain of BCR provides colocalization of full-length BCR with centrosome together with cortactin to facilitate actin-organizing function
1Gurianov D. S., 1Antonenko S. V., 1Telegeev G. D.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143

Abstract

Chromosomal translocation between 9 and 22 chromosomes leads to the fusion of bcr and abl genes. Because of different breakpoints in bcr gene three forms of chimeric BCR-ABL proteins exist – p230, p210, and p190. BCR-ABLp190 lacks Pleckstrin homology (PH) domain of BCR and is associated with acute lymphoblastic leukaemia. In contrast, BCR-ABLp210 has PH domain and occurs during chronic myeloblastic leukaemia. BCR-ABL can bind to centrosomes, which function as a regulating center of cell division and spindle formation during mitosis. Cortactin, the main function of which is actin branching, was previously identified by mass-spectrometry as one of the potential partners interacting with the PH domain of BCR. Aim. To determine whether BCR and cortactin colocalize with centrosomes and to study a possible role of PH domain in such colocalization. Methods. Mammalian cell culturing, immunofluorescence analysis, fluorescent microscopy of live cells. Results. In the present work we show that both full-length BCR protein and PH domain colocalize with centrosome together with cortactin in live HEK293T cells. We also demonstrate that BCR colocalizes with γ-tubulin and the points of actin branching in fixed K562 cells. Using anti-ABL and anti-BCR antibodies we also show that colocalization with the actin branching center is typical for BCR-ABL and BCR, but not for ABL alone. Conclusions. PH domain of BCR is required for colocalization of BCR or BCR-ABL with centrosome. Together with cortactin, BCR-ABL can affect centrosome function through deregulation of actin branching or abnormal phosphorylation, which can be a matter of further research.
Keywords: BCR-ABL, centrosome, cortactin, CML

References

[1] Hecht F, Morgan R, Schrier SL, Adams J, Sandberg AA. The Philadelphia (Ph) chromosome in leukemia. I. A new mechanism due to interstitial deletion and insertion in chronic myelocytic leukemia. Cancer Genet Cytogenet. 1985;14(1-2):3-10.
[2] Miroshnychenko D, Dubrovska A, Maliuta S, Telegeev G, Aspenström P. Novel role of pleckstrin homology domain of the Bcr-Abl protein: analysis of protein-protein and protein-lipid interactions. Exp Cell Res. 2010;316(4):530-42.
[3] Weaver AM. Cortactin in tumor invasiveness. Cancer Lett. 2008;265(2):157-66.
[4] Hirakawa H, Shibata K, Nakayama T. Localization of cortactin is associated with colorectal cancer development. Int J Oncol. 2009;35(6):1271-6.
[5] Rothschild BL, Shim AH, Ammer AG, Kelley LC, Irby KB, Head JA, Chen L, Varella-Garcia M, Sacks PG, Frederick B, Raben D, Weed SA. Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification. Cancer Res. 2006;66(16):8017-25.
[6] Patel AS, Schechter GL, Wasilenko WJ, Somers KD. Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene. 1998;16(25):3227-32.
[7] Ambrosio EP, Rosa FE, Domingues MA, Villacis RA, Coudry Rde A, Tagliarini JV, Soares FA, Kowalski LP, Rogatto SR. Cortactin is associated with perineural invasion in the deep invasive front area of laryngeal carcinomas. Hum Pathol. 2011;42(9):1221-9.
[8] Bertier L, Boucherie C, Zwaenepoel O, Vanloo B, Van Troys M, Van Audenhove I, Gettemans J. Inhibitory cortactin nanobodies delineate the role of NTA- and SH3-domain-specific functions during invadopodium formation and cancer cell invasion. FASEB J. 2017;31(6):2460-2476.
[9] Gurianov DS, Antonenko SV, Telegeev GD. Colocalization of cortactin and PH domain of BCR in HEK293T cells and its potential role in cell signaling. Biopolym Cell 2016; 32(1): 26–33.
[10] Conduit PT, Wainman A, Raff JW. Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol. 2015;16(10):611-24.
[11] Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J, Blanchoin L, Théry M. The centrosome is an actin-organizing centre. Nat Cell Biol. 2016;18(1):65-75.
[12] Patel H, Gordon MY. Abnormal centrosome-centriole cycle in chronic myeloid leukaemia? Br J Haematol. 2009;146(4):408-17.
[13] Wang W, Chen L, Ding Y, Jin J, Liao K. Centrosome separation driven by actin-microfilaments during mitosis is mediated by centrosome-associated tyrosine-phosphorylated cortactin. J Cell Sci. 2008;121(Pt 8):1334-43.
[14] Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979;7(6):1513-23.
[15] Sauer ML, Kollars B, Geraets R, Sutton F. Sequential CaCl2, polyethylene glycol precipitation for RNase-free plasmid DNA isolation. Anal Biochem. 2008;380(2):310-4.
[16] Mowiol mounting medium. Cold Spring Harb Protoc 2006; 2006(1): pdb.rec10255.
[17] Whittaker ET. XVIII—On the Functions which are represented by the Expansions of the Interpolation-Theory. Proc R Soc Edinburgh 1915; 35:181–94.
[18] Shannon CE. Communication In The Presence Of Noise. Proc IEEE 1998; 86(2): 447–57.
[19] Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-82.
[20] Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(Pt 3):213-32.
[21] Manders EMM, Verbeek FJ, Aten JA. Measurement of co-localization of objects in dual-colour confocal images. J Microsc 1993; 169(3): 375–82.
[22] Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, Guiet R, Vonesch C, Unser M. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods. 2017;115:28-41.
[23] Dey N, Blanc-Feraud L, Zimmer C, Roux P, Kam Z, Olivo-Marin JC, Zerubia J. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc Res Tech. 2006;69(4):260-6.
[24] Kirshner H, Aguet F, Sage D, Unser M. 3-D PSF fitting for fluorescence microscopy: implementation and localization application. J Microsc. 2013;249(1):13-25.
[25] Aigouy B, Mirouse V. ScientiFig: a tool to build publication-ready scientific figures. Nat Methods. 2013;10(11):1048.
[26] Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 2003;63(6):1398-404.
[27] Nigg EA. Origins and consequences of centrosome aberrations in human cancers. Int J Cancer. 2006;119(12):2717-23.
[28] Giehl M, Fabarius A, Frank O, Hochhaus A, Hafner M, Hehlmann R, Seifarth W. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia. 2005;19(7):1192-7.
[29] Krueger EW, Orth JD, Cao H, McNiven MA. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell. 2003;14(3):1085-96.
[30] Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever S. Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J. 2010;29(21):3593-606.
[31] Cao H, Weller S, Orth JD, Chen J, Huang B, Chen JL, Stamnes M, McNiven MA. Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol. 2005;7(5):483-92.
[32] Chen L, Wang ZW, Zhu JW, Zhan X. Roles of cortactin, an actin polymerization mediator, in cell endocytosis. Acta Biochim Biophys Sin (Shanghai). 2006;38(2):95-103.
[33] Zhu J, Zhou K, Hao JJ, Liu J, Smith N, Zhan X. Regulation of cortactin/dynamin interaction by actin polymerization during the fission of clathrin-coated pits. J Cell Sci. 2005;118(Pt 4):807-17.
[34] Feit H, Slusarek L, Shelanski ML. Heterogeneity of tubulin subunits. Proc Natl Acad Sci U S A. 1971;68(9):2028-31.
[35] Khodjakov A, Rieder CL. The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J Cell Biol. 1999;146(3):585-96.
[36] Raynaud-Messina B, Merdes A. Gamma-tubulin complexes and microtubule organization. Curr Opin Cell Biol. 2007;19(1):24-30.