Biopolym. Cell. 2016; 32(6):468-471.
Short Communications
Telomerase inhibition by new di- and trisubstituted acridine derivatives
1Negrutska V. V., 1Saraieva I. V., 1Kostina V. G., 1Alexeeva I. V., 1Lysenko N. A., 1Dubey I. Ya.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Aim. To study a series of new acridine derivatives containing two basic fragments able to bind to quadruplex DNA at C-4 and C-9 positions as potential telomerase inhibitors. Methods. TRAP assay was used to determine the activity of compounds in vitro. Results. A number of acridines inhibiting the enzyme at micromolar concentrations were found, with IC50 = 2.6 µM for the most active compound. Conclusions. The introduction of a highly basic N,N-dimethylaminoalkyl group at the C-9 position of the acridine core results in a strong increase of biological activity of compounds, and a 5-methyl substituent further enhances it.
Keywords: telomerase inhibitors, acridines, quadruplex DNA, TRAP

References

[1] Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev. 2002;66(3):407-25.
[2] Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev. 2013;39(5):444-56.
[3] Sekaran V, Soares J, Jarstfer MB. Telomere maintenance as a target for drug discovery. J Med Chem. 2014;57(3):521-38.
[4] Xu Y. Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. Chem Soc Rev. 2011;40(5):2719-40.
[5] Neidle S. Quadruplex Nucleic Acids as Novel Therapeutic Targets. J Med Chem. 2016;59(13):5987-6011.
[6] Maji B, Bhattacharya S. Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA. Chem Commun (Camb). 2014;50(49):6422-38.
[7] Monchaud D, Teulade-Fichou MP. A hitchhiker's guide to G-quadruplex ligands. Org Biomol Chem. 2008;6(4):627-36.
[8] Cuenca F, Moore MJB., Johnson K, Guyen B, De Cian A, Neidle S. Design, synthesis and evaluation of 4,5-di-substituted acridone ligands with high G-quadruplex affinity and selectivity, together with low toxicity to normal cells. Bioorg Med Chem Lett. 2009; 19(17):5109-13.
[9] Sparapani S, Haider SM, Doria F, Gunaratnam M, Neidle S. Rational design of acridine-based ligands with selectivity for human telomeric quadruplexes. J Am Chem Soc. 2010;132(35):12263-72.
[10] Ungvarsky J, Plsikova J, Janovec L, Koval J, Mikes J, Mikesová L, Harvanova D, Fedorocko P, Kristian P, Kasparkova J, Brabec V, Vojtickova M, Sabolova D, Stramova Z, Rosocha J, Imrich J, Kozurkova M. Novel trisubstituted acridines as human telomeric quadruplex binding ligands. Bioorg Chem. 2014;57:13-29.
[11] Gao C, Zhang W, He S, Li S, Liu F, Jiang Y. Synthesis and antiproliferative activity of 2,7-diamino l0-(3,5-dimethoxy)benzyl-9(10H)-acridone derivatives as potent telomeric G-quadruplex DNA ligands. Bioorg Chem. 2015;60:30-6.
[12] Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011-5.
[13] Kostina VG, Alexeeva IV, Lysenko NA, Negrutska VV., Dubey IYa. Synthesis and biological evaluation of new derivatives of tricyclic heteroaromatic carboxamides as potential topoisomerase I inhibitors. Ukr Bioorg Acta 2016; 14(1):3-8.
[14] Burger AM. Standard TRAP assay. In: Telomeres and Telomerase: Methods and Protocols. Eds. Double JA, Thompson MJ. Humana Press: Totowa, NJ, USA, 2002: 109-24.
[15] Krupp G, Kühne K, Tamm S, Klapper W, Heidorn K, Rott A, Parwaresch R. Molecular basis of artifacts in the detection of telomerase activity and a modified primer for a more robust 'TRAP' assay. Nucleic Acids Res. 1997;25(4):919-21.
[16] Negrutska VV, Dubey LV, Ilchenko MM, Dubey IYa. Design and study of telomerase inhibitors based on G-quadruplex ligands. Biopolym Cell 2013; 29(3):169-76.