Biopolym. Cell. 2015; 31(3):193-199.
Молекулярная и клеточная биотехнологии
Мониторинг трансплантированных мезенхимальных стволовых клеток Вартонового студня пуповины человека in vivo в ксеногенных системах
1, 2Ковальчук М. В., 2Шувалова Н. С., 1, 2Похоленко Я. А., 1Драгулян М. В., 1Гулько Т. П., 2Дерябина Е. Г., 1Кордюм В. А.
  1. Институт молекулярной биологии и генетики НАН Украины
    ул. Академика Заболотного, 150, Киев, Украина, 03680
  2. Государственное учреждение «Институт генетической и регенеративной медицины НАМН Украины»
    ул. Вышгородская, 67, Киев, Украина, 04114

Abstract

Мезенхимальные стволовые клетки (МСК) являются идеальными кандидатами для восстановление тканей и иммуномодуляции при клеточной терапии. Цель. Изучить выживание трансплантированных МСК Варто­но­во­го студня пуповины человека (МСК-ВС) на модели экспериментального остеоартроза у крыс (введение клеток в коленный сустав), и исследовать влияние коллагенового матрикса на выживание МСК-ВС in vivo. Методы. Вы­де­ление и культивирование МСК-ВС in vitro. Имму­но­ло­ги­ческое фенотипирование мультиплицированных МСК-ВС про­ведено с помощью проточной цитофлуорометрии. Сохра­не­ние трансплантированных клеток изучали с помощью ПЦР, выявляющей специфические для человека последовательности в геномной ДНК, изолированной из тканей животных. Результы. Исследование индивидуальних и выращенные на матриксе МСК-ВС, с помощью ПЦР, показало, что альфа-сателлитная ДНК человека детектировалась в первые сутки у иммунокомпетентных животных в поврежденном суставе. В коллагеновом матриксе (в модели подкожной имплантации) ДНК человека была обнаружена на 5, но не детектировалась на 12 сутки. Вы­воды. По результатам ПЦР МСК-ВС выживали у жи­вотных с остеоартритом в течение короткого периода. Коллагеновый матрикс увеличивал продолжительность пре­бывания МСК-ВС у реципиентов. МСК-ВС могут рассматриваться как перспективный источник клеток для лечения остеоартрита у человека.
Keywords: МСК-ВС, альфа-сателлитная ДНК, 3-D мат­рикс, вы­живание клеток, ПЦР

References

[1] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-7.
[2] Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180(4):2581-7.
[3] Ankrum J, Karp JM. Mesenchymal stem cell therapy: Two steps forward, one step back. Trends Mol Med. 2010;16(5):203-9.
[4] Abarbanell AM, Coffey AC, Fehrenbacher JW, Beckman DJ, Herrmann JL, Weil B, Meldrum DR. Proinflammatory cytokine effects on mesenchymal stem cell therapy for the is­chemic heart. Ann Thorac Surg. 2009;88(3):1036–43.
[5] Wu L, Leijten JC, Georgi N, Post JN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in­crease chondrocyte proliferation and matrix formation. Tissue Eng Part A. 2011;17(9–10):1425–36.
[6] ter Huurne M, Schelbergen R, Blattes R, Blom A, de Munter W, Grevers LC, Jeanson J, No?l D, Casteilla L, Jorgensen C, van den Berg W, van Lent PL. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 2012;64(11):3604-13.
[7] Maumus M, Jorgensen C, No?l D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie. 2013;95(12):2229-34.
[8] Tamama K, Kerpedjieva SS. Acceleration of wound healing by multiple growth factors and cytokines secreted from mul­tipotential stromal cells. mesenchymal stem cells. Adv Wo­und Care (New Rochelle). 2012;1(4):177–182.
[9] Song YS, Lee HJ, Doo SH, Lee SJ, Lim I, Chang KT, Kim SU. Mesenchymal stem cells overexpressing hepatocyte growth factor (HGF) inhibit collagen deposit and improve bladder function in rat model of bladder outlet obstruction. Cell Tran­splant. 2012;21(8):1641–50.
[10] Liu S, Hou KD, Yuan M, Peng J, Zhang L, Sui X, Zhao B, Xu W, Wang A, Lu S, Guo Q. Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. J Biosci Bioeng. 2014;117(2):229-35.
[11] Gonz?lez MA, Gonzalez-Rey E, Rico L, B?scher D, Delgado M. Treatment of experimental arthritis by inducing immune to­le­rance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009;60(4):1006–19.
[12] Pigott JH, Ishihara A, Wellman ML, Russell DS, Bertone AL. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-ar­ticular injection in horses. Vet Immunol Immunopathol. 2013; 156(1–2):99–106.
[13] Li J, Ezzelarab MB, Cooper DK. Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation. 2012;19(5):273-85.
[14] Lin CS, Lin G, Lue TF. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev. 2012;21(15):2770-8.
[15] Chuang CK, Lin KJ, Lin CY, Chang YH, Yen TC, Hwang SM, Sung LY, Chen HC, Hu YC. Xenotransplantation of human mesenchymal stem cells into immunocompetent rats for calvarial bone repair. Tissue Eng Part A. 2010;16(2):479-88.
[16] Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yone­da M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002; 10(3):199–206.
[17] Qi Y, Feng G, Yan W. Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Mol Biol Rep. 2012;39(5):5683-9.
[18] Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang SD, Borlongan CV. Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci. 2013;14(6):11692–712.
[19] Guide for the care and use of laboratory animals, Washington: National Academy Press, 1996. 136 p.
[20] Law of Ukraine «The protection of animals from cruel behavior» from 21.02.2006 N 3447-IV. Vidomosti Verk­ho­v­noy Rady Ukrainy. 2006; 27:990.
[21] Maslova OO, Shuvalova NS, Sukhorada OM, Zhukova SM, Deryabina OG, Makarenko MV, Govseiev DO, Kordium VA. Heterogeneity of umbilical cords as a source for mesenchymal stem cells. Dataset Papers in Biology. 2013;2013:1–4.
[22] Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Hor­witz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular The­rapy position statement. Cytotherapy. 2006;8(4):315–7.
[23] Bendele AM. Animal models of osteoarthritis. J Musculoskelet Neuronal Interact. 2001;1(4):363-76.
[24] Zeugolis DI, Li B, Lareu RR, Chan CK, Raghunath M. Col­lagen solubility testing, a quality assurance step for reproducible electro-spun nano-fibre fabrication. A technical no­te. J Biomater Sci Polym Ed. 2008;19(10):1307–17.
[25] Pokholenko IaO, Chetyrkina MD, Dubey LV, Dubey IYa, Moshynets OV, Sheludko EV, Shpylova SP, Degtiarova MI, Kordium VA. Development and characterization of porous functionalized collagen scaffolds for delivery of FGF-2. Biopolym Cell. 2014; 30(3):216–22.
[26] Grimberg J, Nawoschik S, Belluscio L, McKee R, Turck A, Eisenberg A. A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res. 1989;17(20):8390.
[27] Biase FH, Franco MM, Goulart LR, Antunes RC. Protocol for extraction of genomic DNA from swine solid tissues. Genet Mol Biol. 2002;25(3):313–5.
[28] Becker M, Nitsche A, Neumann C, Aumann J, Junghahn I, Fichtner I. Sensitive PCR method for the detection and real-time quantification of human cells in xenotransplantation systems. Br J Cancer. 2002;87(11):1328-35.
[29] Warburton PE, Greig GM, Haaf T, Willard HF. PCR amplification of chromosome-specific alpha satellite DNA: definition of centromeric STS markers and polymorphic analysis. Genomics. 1991;11(2):324-33.
[30] Agrawal H, Shang H, Sattah AP, Yang N, Peirce SM, Katz AJ. Human adipose-derived stromal/stem cells demonstrate short-lived persistence after implantation in both an immunocompetent and an immunocompromised murine model. Stem Cell Res Ther. 2014;5(6):142.
[31] Toupet K, Maumus M, Luz-Crawford P, Lombardo E, Lopez-Belmonte J, van Lent P, Garin MI, van den Berg W, Dalemans W, Jorgensen C, No?l D. Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis. PLoS One. 2015; 10(1):e0114962.
[32] Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA, Yi T, Mirensky TL, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman WM, Snyder E, Kyriakides TR, Pober JS, Breuer CK. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A. 2010;107(10):4669-74.
[33] Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54-63.