Biopolym. Cell. 2014; 30(5):358-364.
Геномика, транскриптомика и протеомика
Чувствительность дрожжей Sассharomyces cerevisiae, дефектных по различным участкам сигнального пути TOR, к карбонильному/окислительному стрессу
1Валишкевич Б. В.
  1. Прикарпатский национальный университет имени Василия Стефаника
    ул. Шевченко, 57, Ивано-Франковск, Украина, 76025

Abstract

Цель. Исследовать влияние карбонильного/окислительного стресса, индуцированного глиоксалем, метилглиоксалем и пероксидом водорода, на выживание штаммов Sассharomyces cerevisiae, дефектных по разным участками TOR-сигнального пути, в условиях их роста в среде с глюкозой или фруктозой. Методы. Оценка репродуктивной способности в результате определения количества колоний-образующих единиц. Результаты. Показано, что в определенных концентрациях действие вышеупомянутых агентов вызывает повышение уровня выживания, что свидетельствует о наличии горметического эффекта. Выводы. Путь TOR вовлечен в горметический эффект всех использованных токсикантов, однако наличие данного эффекта является специфическим для каждого штамма и зависит от типа углевода в среде инкубации.
Keywords: Saccharomyces cerevisiae, глюкоза, фруктоза, TOR-сигнальный путь, карбонильный/окислительный стресс

References

[1] Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274-93.
[2] Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253(5022):905-9.
[3] Lushchak VI. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes. Acta Biochim Pol. 2006;53(4):679-84.
[4] Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science. 2010;328(5976):321-6.
[5] Rockenfeller P, Madeo F. Ageing and eating. Biochim Biophys Acta. 2010;1803(4):499-506.
[6] Summers DW, Cyr DM. Use of yeast as a system to study amyloid toxicity. Methods. 2011;53(3):226-31.
[7] Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 1993;73(3):585-96.
[8] Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol. 1993;13(10):6012-23.
[9] Warburg O, Posener K, Negelein E. Uber den stoffwechsel der carcinomzelle. Die Naturheilkunde. 1924;152:309–44.
[10] Weinberg RA. The molecular basis of oncogenes and tumor suppressor genes. Ann N Y Acad Sci. 1995;758:331-8.
[11] Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(Pt 20):3589-94.
[12] Bierer BE, Jin YJ, Fruman DA, Calvo V, Burakoff SJ. FK 506 and rapamycin: molecular probes of T-lymphocyte activation. Transplant Proc. 1991;23(6):2850-5.
[13] Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005;17(6):596-603.
[14] V?zina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721-6.
[15] Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med. 2012;18(9):524-33.
[16] Appenzeller-Herzog C, Hall MN. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol. 2012;22(5):274-82.
[17] Ha CW, Huh WK. Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2011;39(4):1336-50.
[18] Medvedik O, Lamming DW, Kim KD, Sinclair DA. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol. 2007;5(10):e261.
[19] Brant JM, Beck S, Dudley WN, Cobb P, Pepper G, Miaskowski C. Symptom trajectories in posttreatment cancer survivors. Cancer Nurs. 2011;34(1):67-77.
[20] Crespo JL, Hall MN. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2002;66(4):579-91.
[21] Beck T, Hall MN. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature. 1999;402(6762):689-92.
[22] Semchyshyn H. Hydrogen peroxide-induced response in E. coli and S. cerevisiae: different stages of the flow of the genetic information. Cent Eur J Biol. 2009; 4(2):142–53.
[23] Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713-24.
[24] Semchyshyn HM. Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast. Int J Microbiol. 2014;2014:485792.
[25] Lushchak VI. Dissection of the hormetic curve: analysis of components and mechanisms. Dose Response. 2014;12(3):466-79.
[26] Bayliak MM, Burdyliuk NI, Izers'ka LI, Lushchak VI. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins. Dose Response. 2013;12(1):93-109.
[27] Mirisola MG, Longo VD. A radical signal activates the epigenetic regulation of longevity. Cell Metab. 2013;17(6):812-3.
[28] Cornelius C, Perrotta R, Graziano A, Calabrese EJ, Calabrese V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a "chi". Immun Ageing. 2013;10(1):15.
[29] Ljungdahl PO, Daignan-Fornier B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 2012;190(3):885-929.
[30] Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydr Res. 2011;346(7):933-8.
[31] Semchyshyn HM, Lozinska LM. Fructose protects baker's yeast against peroxide stress: potential role of catalase and superoxide dismutase. FEMS Yeast Res. 2012;12(7):761-73.
[32] Helliwell SB, Howald I, Barbet N, Hall MN. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics. 1998;148(1):99-112.
[33] Meynel J. Meynell GG, Meynell E. Experimental microbiology (Theory and Practice). Moscow, Mir, 1967; 347 p.
[34] Semchyshyn HM. Reactive carbonyl species in vivo: generation and dual biological effects. ScientificWorldJournal. 2014;2014:417842.
[35] Semchyshyn HM. Fructation in vivo: detrimental and protective effects of fructose. Biomed Res Int. 2013;2013:343914.
[36] Semchyshyn HM, Lushchak VI. Interplay between oxidative and carbonyl stresses: molecular mechanisms, biological effects and therapeutic strategies of protection. Oxidative Stress – Molecular mechanisms and biological effects. InTech. 2012; 15–46.
[37] Lozins'ka LM, Semchyshyn HM. Biological aspects of non-enzymatic glycosylation. Ukr Biokhim Zh. 2012;84(5):16-37.
[38] Semchyshyn HM, Bayliak MM, Lushchak VI. Starvation in yeasts: biochemical aspects. Biology of starvation in humans and other organisms. Ed. TC. Merkin. New York, Nova Science, 2011;103–50.
[39] Homza BV, Vasyl'kovs'ka RA, Semchyshyn HM. Defects in TOR regulatory complexes retard aging and carbonyl/oxidative stress development in yeast Saccharomyces cerevisiae. Ukr Biokhim Zh. 2014;86(1):85-92.
[40] Lushchak VI. Oxidative stress and mechanisms of protection against it in bacteria. Biochemistry (Mosc). 2001;66(5):476-89.
[41] Semchyshyn HM. Defects in antioxidant defence enhance glyoxal toxicity in the yeast Saccharomyces cerevisiae. Ukr Biokhim Zh. 2013;85(5):50-60.
[42] Turk Z. Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiol Res. 2010;59(2):147-56.
[43] Kalapos MP. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett. 1999;110(3):145-75.
[44] Richard JP. Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans. 1993;21(2):549-53.