Biopolym. Cell. 2014; 30(4):279-285.
Структура и функции биополимеров
Изучение влияния дефосфорилированных 2'-5' олигоаденилатов на конформацию белка apo-S100A1 методами гетероядерного ЯМР и кругового дихроизма
1Скоробогатов А. Ю., 1Ложко Д. Н., 2, 3Жуков И. Ю., 1Козлов А. В., 1Ткачук З. Ю.
  1. Институт молекулярной биологии и генетики НАН Украины
    ул. Академика Заболотного, 150, Киев, Украина, 03680
  2. Институт биохимии и биофизики Польской академии наук
    ул. Павинского, 5a, Варшава, Польша, 02-106
  3. NanoBioMedical центр, Университета Адама Мицкевича
    ул. Умултовска 85, Познань, Польша, 61-614

Abstract

Низкомолекулярные медиаторы природного происхождения – 2'-5' олигоаденилаты – играют важную роль в антивирусном механизме, связанном с интерфероном, они причастны к росту клеток, апоптозу и другим важным процессам, происходящим в клетке. Цель данного исследования состояла в поиске доказательств возможности взаимодействия 2'-5' олигоаденилатов с апо-формой белка S100A1 человека. Методы. Использованы методы ЯМР и КД. Результаты. Учитывая концентрацию 2'-5' олигоаденилатов внутри живой клетки, можно предположить, что они служат дополнительными биологически активными соединениями, способными регулировать функционирование белка S100A1 in vivo. Полученные данные указывают на то, что в итоге взаимодействия между 2'-5' олигоаденилатами и белком S100A1 происходят изменения вторичной структуры последнего. Кроме того, удалось определить аминокислотные остатки, непосредственно участвующие в этом взаимодействии. Выводы. Вероятно, что 2'-5' олигоаденилаты являются дополнительными элементами сложной системы, регулирующей процессы, опосредованные ионами Са2+.
Keywords: 2'-5' олигоаденилаты, S100A1

References

[1] Player MR, Torrence PF. The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther. 1998;78(2):55-113.
[2] Silverman RH. A scientific journey through the 2-5A/RNase L system. Cytokine Growth Factor Rev. 2007;18(5-6):381-8.
[3] Liang SL, Quirk D, Zhou A. RNase L: its biological roles and regulation. IUBMB Life. 2006;58(9):508-14.
[4] Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res. 2004;24(8):439-54.
[5] Pat. USA 5571799. (2'–5') olygoadenylate analogues useful as inhibitors of host-vs. graft response. Z Tkachuk, E Kvasyuk, G Matsuka, I Mikhailopulo I. Appl. 1991; publ. 1996.
[6] Filippov I, Tkachuk Z, Dubei I. Mechanisms of vessel tone regulation by 2'–5'-oligoadenylates. Dopovidi Akad Nauk Ukrainy. 2010; 6:152–6.
[7] Tkachuk ZIu, Dube? LV, Tkachuk VV, Tkachuk LV, Losyts'ky? MIu, Iashchuk VM, Dube? IIa. Study of the interaction of 2'-5'-oligoadenylates and their analogues with proteins by fluorescence spectroscopy. Ukr Biokhim Zh. 2011;83(1):45-53.
[8] Levchenko SM, Rebriev AV, Tkachuk VV, Dubey LV, Dubey IYa, Tkachuk ZYu. Studies on interaction of oligoadenylates with proteins in vitro by MALDI-TOF mass spectrometry. Biopolym Cell. 2013;29(1):42–8.
[9] Tkachuk Z, Dubey I, Tkachuk L, Dubey L, Shlykov S, Babich L. The effect of 2'–5'-oligoadenylates on calcium binding to Calmodulin. 17th Int. Symp on Ca2+-Binding Proteins and Calcium Function in Health and Disease. 2011; 41.
[10] Jaremko ?, Jaremko M, Elfaki I, Mueller JW, Ejchart A, Bayer P, Zhukov I. Structure and dynamics of the first archaeal parvulin reveal a new functionally important loop in parvulin-type prolyl isomerases. J Biol Chem. 2011;286(8):6554-65.
[11] Zimmer DB, Chaplin J, Baldwin A, Rast M. S100-mediated signal transduction in the nervous system and neurological diseases. Cell Mol Biol (Noisy-le-grand). 2005;51(2):201-14.
[12] Prosser BL, Hern?ndez-Ochoa EO, Lovering RM, Andronache Z, Zimmer DB, Melzer W, Schneider MF. S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle. Am J Physiol Cell Physiol. 2010;299(5):C891-902.
[13] Wright NT, Prosser BL, Varney KM, Zimmer DB, Schneider MF, Weber DJ. S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J Biol Chem. 2008;283(39):26676-83.
[14] Kostyuk PG, Kozlov AV, Tkachuk ZYu, Viatchenko-Karpinksi SV, Sedova MV, Mikhaikopulo IA, Kvasyuk VI, Tselenko VI. Effect of "core" 2'5'-oligoadenylates on the phosphorylation-dependent calcium channels in GH3 cells. Ukr Biokhim Zh. 1995;67(1):26-32.
[15] Dubey IYa, Dubey LV. Synthesis of (2'–5')-triadenylate and their analogues using O-nucleophilic catalysis of internucleotide coupling reaction. Biopolym Cell. 2007; 23(6):538–44.
[16] Dixon M, Webb EC. Enzyme fractionation by salting-out: a theoretical note. Adv Protein Chem. 1961;16:197-219.
[17] Falconer JS, Jenden DJ, Taylor DB. The application of solubility measurements to the study of complex protein solutions and to the isolation of individual proteins. Discuss Faraday Soc. 1953;13:40.
[18] Bolewska K, Koz?owska H, Goch G, Miko?ajek B, Bierzy?ski A. Molecular cloning and expression in Escherichia coli of a gene coding for bovine S100A1 protein and its Glu32-->Gln and Glu73-->Gln mutants. Acta Biochim Pol. 1997;44(2):275-83.
[19] B?hm G, Muhr R, Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992;5(3):191-5.
[20] Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995;6(2):135-40.
[21] Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6(3):277-93.
[22] Goddard TD, Kneller DG. SPARKY 3. San Francisco, University of California publ., 2004.
[23] Kelly SM, Price NC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci. 2000;1(4):349-84.
[24] Johnson WC Jr. Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205-14.
[25] Rustandi RR, Baldisseri DM, Inman KG, Nizner P, Hamilton SM, Landar A, Landar A, Zimmer DB, Weber DJ. Three-dimensional solution structure of the calcium-signaling protein apo-S100A1 as determined by NMR. Biochemistry. 2002;41(3):788-96.
[26] Ferguson PL, Shaw GS. Role of the N-terminal helix I for dimerization and stability of the calcium-binding protein S100B. Biochemistry. 2002;41(11):3637-46.
[27] Nowakowski M, Jaremko ?, Jaremko M, Zhukov I, Belczyk A, Bierzy?ski A, Ejchart A. Solution NMR structure and dynamics of human apo-S100A1 protein. J Struct Biol. 2011;174(2):391-9.
[28] Lenar?i? ?ivkovi? M, Zar?ba-Kozio? M, Zhukova L, Pozna?ski J, Zhukov I, Wys?ouch-Cieszy?ska A. Post-translational S-nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein. J Biol Chem. 2012;287(48):40457-70.
[29] Garrett DS, Seok YJ, Peterkofsky A, Clore GM, Gronenborn AM. Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry. 1997;36(15):4393-8.
[30] Most P, Remppis A, Pleger ST, Katus HA, Koch WJ. S100A1: a novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R568-77.
[31] Prosser BL, Wright NT, Hern?ndez-Ochoa EO, Varney KM, Liu Y, Olojo RO, Zimmer DB, Weber DJ, Schneider MF. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling. J Biol Chem. 2008;283(8):5046-57.
[32] Wright NT, Cannon BR, Wilder PT, Morgan MT, Varney KM, Zimmer DB, Weber DJ. Solution structure of S100A1 bound to the CapZ peptide (TRTK12). J Mol Biol. 2009;386(5):1265-77.
[33] Groves P, Linse S, Thulin E, Fors?n S. A calbindin D9k mutant containing a novel structural extension: 1H nuclear magnetic resonance studies. Protein Sci. 1997;6(2):323-30.
[34] Nowakowski M, Ruszczy?ska-Bartnik K, Budzi?ska M, Jaremko L, Jaremko M, Zdanowski K, Bierzy?ski A, Ejchart A. Impact of calcium binding and thionylation of S100A1 protein on its nuclear magnetic resonance-derived structure and backbone dynamics. Biochemistry. 2013;52(7):1149-59.
[35] Marlatt NM, Shaw GS. Amide exchange shows calcium-induced conformational changes are transmitted to the dimer interface of S100B. Biochemistry. 2007;46(25):7478-87.