Biopolym. Cell. 2012; 28(6):477-485.
Bioorganic Chemistry
Evaluation of antibacterial and antiviral activity of N-arylamides of 9-methyl and 9-methoxyphenazine-1-carboxylic acids – inhibitors of the phage T7 model transctiption
1Palchykovska L. G., 1Vasylchenko O. V., 1Platonov M. O., 1Kostina V. G., 2Babkina M. M., 2Tarasov O. A., 3Starosyla D. B., 1Samijlenko S. P., 3Rybalko S. L., 2Deriabin O. M., 1Hovorun D. M.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Institute of Veterinary Medicine, NAAS of Ukraine
    30, Donetska Str., Kyiv, Ukraine, 03151
  3. Gromashevsky L.V. Institute of Epidemiology and Infection Diseases, AMS of Ukraine
    5, Amosova Str., Kyiv, Ukraine, 03038

Abstract

Aim. Search for compounds with antibacterial and antiviral properties among N-arylamides of 9-substituted phenazine-1-carboxylic acids (PCA), inhibitors of the RNA synthesis. Methods. Influence of N-aryl-amides on the RNA synthesis was tested in vitro in the model system of the DNA-dependent RNA polymerase of phage T7 (T7 RNAP). Antimicrobial activities of the N-arylamides against bacteria Erysipelothrix rhusiopathiae VR-2 var. IVM, Klebsiella spp. and Escherichia coli ATCC25922 were investigated by the method of two-fold dilution in a liquid medium. Antiviral effects against Bovine Viral Diarrhea Virus (BVDV) and cytotoxicity of the N-arylamides were evaluated using Madin-Darby bovine kidney (MDBK) cells. Results. Twenty N-arylamides appeared to be efficacious inhibitors of the RNA synthesis at concentrations of 0.48–61 µM. The compound 16 proved to be the most effective inhibitor of T7 RNAP with the IC50 value being 0.48 µM. Fourteen N-arylamides demonstrated antibacterial properties against gram positive and gram negative bacteria at the 0.1–10 µg/ml concentrations. A number of the N-arylamides revealed a multiplicity of their antimicrobial actions: 7 compounds against two bacteria and two compounds, 2 and 3, against three bacteria investigated. N-arylamides 16 and 26 showed high inhibitory activity as to BVDV with the IC50 values 0.43 and 0.88 µg/ml and SI values 160 and 10 correspondingly. Conclusions. The obtained data evidence that the most likely targets of the N-arylamides 9-substituted PCA in bacteria and viruses are their RNA synthesizing complexes.
Keywords: N-arylamides 9-substituted PCA, model system of the DNA-dependent RNA-polymerase of phage T7, antibacterial activity, antiviral activity

References

[1] Maratz H. R. 1995 The origin of new diseases The World Book Health and Medical Annual Portland: World Book, Inc.,:45–59.
[2] Arias C. A., Murray B. E. 2009 Antibiotic-resistant bugs in the 21st century – a clinical super-challenge N. Engl. J. Med 360, N 5:439–443.
[3] De Logu A., Palchykovska L. H., Kostina V. H., Sanna A., Meleddu R., Chisu L., Alexeeva I. V., Shved A. D. 2009 Novel N-aryl- and N-heteryl phenazine-1-carboxamides as potential agents for the treatment of infections sustained by drug-resistant and multi-drug-resistant Mycobacterium tuberculosis. Int. J. Antimicrob. Agents33, N 3:223–229.
[4] Palchykovska L. G., Alexeeva I. V., Kostina V. G., Platonov M. O., Negrutska V. V., Deriabin O. M., Tarasov O. A., Shved A. D. 2008 New amides of phenazine-1-carboxylic acid: antimicrobial activity and structure-activity relationship Ukr. Biokhim. Zh 80, N 3:142–146.
[5] Das K., Lewi P. J., Hughes S. H, Arnold E. 2005 Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog. Biophys. Mol. Biol 88, N 2:209–231.
[6] Das K., Clark A. D. Jr., Lewi P. J., Heeres J., De Jonge M. R., Koymans L. M., Vinkers H. M., Daeyaert F., Ludovici D. W., Kukla M. J., De Corte B., Kavash R. W., Ho C. Y., Ye H., Lichtenstein M. A., Andries K., Pauwels R., De Bethune M. P., Boyer P. L., Clark P., Hughes S. H., Janssen P. A., Arnold E. 2004 Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants J. Med. Chem 47, N 10:2550–2560.
[7] Sahlberg C., Xiao-Xiong Z. 2008 Development of non-nucleoside reverse transcriptase inhibitors for anti-HIV therapy Antiinfect. Agents Med. Chem 7, N 2:101–117.
[8] Cano F. R., Kuo S. C., Lampen J. O. 1973 Lomofungin, an inhibitor of deoxyribonucleic acid-dependent ribonucleic acid polymerases Antimicrobial. Agents Chemother 3, N 6:723–728.
[9] Rewcastle G. W., Denny W. A., Baguley B. C. 1987 Potential antitumor agents. 51. Synthesis and antitumor activity of substituted phenazine-1-carboxamides J. Med. Chem 30, N 5:843–851.
[10] Gamage S. A., Rewcastle G. W., Baguley B. C., Charlton P. A., Denny W. A. 2006 Phenazine-1-carboxamides: structure-cytotoxicity relationships for 9-substituents and changes in the H-bonding pattern of the cationic side chain Bioorg. Med. Chem 14, N 4:1160–1168.
[11] Palchykovska L. G., Vasylchenko O. V., Platonov M. O., Kostina V. G., Lysenko N. A., Alexeeva I. V., Hovorun D. M., Shved A. D. 2011 Design of transcription inhibitors on the basis of N-arylamides of 9-methyland 9-methoxyphenazine-1-carboxylic acids. Ukr Biokhim Zh. 83, N 2:65–72.
[12] Rao Y.M., Sureshkumar G. K. 2000 Oxidative-stress-induced production of pyocyanin by Xanthomonas campestris and its effect on the indicator target organism, Escherichia coli J. Ind. Microbiol. Biotechnol 25, N 5:266–272.
[13] Price-Whelan A., Dietrich L. E., Newman D. K. 2006 Rethinking «secondary» metabolism: physiological roles for phenazine antibiotics Nat. Chem. Biol 2 N 2:71–78.
[14] Hollstein U., Van Gemert R. J. Jr. 1971 Interaction of phenazines with polydeoxyribonucleotides Biochemistry 10, N 3:497–504.
[15] Hollstein U., Butler P. L. 1972 Inhibition of ribonucleic acid synthesis by myxin Biochemistry 11, N 8:1345–1350.
[16] Turner J. M., Messenger A. J. 1986 Occurrence, biochemistry and physiology of phenazine pigment production Adv. Microb. Physiol 27:211–275.
[17] Kerr J. R. 2000 Phenazine pigments: antibiotics and virulence factors Infect. Dis. Rev 29:184–194.
[18] Stankiewicz-Drogon A., Palchykovska L. G., Kostina V. G., Alexeeva I. V., Shved A. D., Boguszewska-Chachulska A. M. 2008 New acridone-4-carboxylic acid derivatives as potential inhibitors of hepatitis C virus infection Bioorg. Med. Chem 16, N 19:8846–8852.
[19] Palchykovska L. G., Alexeeva I. V., Platonov M. O., Kostenko O. M., Usenko L. S., Negrutska V. V., Shved A. D. 2009 New 1,2,4-triazine bearing compounds: molecular modeling, synthesis and biotesting Biopolym. Cell 25, N 6:491–499.
[20] Palchykovska L. G., Alexeeva I. V., Negrutska V. V., Kostyuk Yu. K., Indychenko T. M., Kostenko O. M., Kryvorotenko D. V., Shved A. D., Dubey I. Ya. 2010 Inhibition of in vitro transcription by 2-arylidene derivatives of thiazolo[3,2-a]benzimidazol-3(2H)-one Biopolym. Cell 26, N 6:508–511.
[21] National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically 1993 Third ed. Approved Standard NCCLS Document M7-A3. 13, No. 25, NCCLS, Villanova, PA, December 1993.
[22] Luber P., Bartelt E., Genschow E., Wagner J., Hahn H. 2003 Comparison of broth microdilution, E Test, and agar dilution methods for antibiotic susceptibility testing of Campylobacter jejuni and Campylobacter coli J. Clin. Microbiol 41, N 3:1062–1068.
[23] Jorgensen J. H., Turnidge J. D., Washington J. A. 2007Antibacterial susceptibility tests: dilution and disk diffusion methods Manual of clinical microbiology / Eds P. R. Murray et al., 9th ed Washington: Am. Soc. Microbiol. publ.,:1152– 1172.
[24] Shimizu Y. K., Yoshikura H. 1999 Cell culture systems for the detection of HCV infection Methods Mol. Med 19:483– 488.
[25] Basch H., Gadebusch H. H. 1968 In vitro antimicrobial activity of dimethylsulfoxide Appl. Microbiol 16, N 12:1953– 1954.
[26] Delarue M., Poch O., Tordo N., Moras D., Argos P. 1990 An attempt to unify the structure of polymerases Protein Eng 3, N 6:461–467.
[27] Tunitskaya V. L., Kochetkov S. N. 2002 Structural-functional analysis of bacteriophage T7 RNA polymerase Biochemistry (Mosc) 67, N 10:1124–1135.
[28] Dennehy J. J. 2009 Bacteriophages as model organisms for virus emergence research Trends Microbiol 17. N 10:450–457.
[29] Egyeki M., Turoczy G., Majer Z., Toth K., Fekete A., Maillard P., Csik G. 2003 Photosensitised inactivation of T7 Phage as surrogate of non-enveloped DNA viruses: efficiency and mechanism of action Biochim. Biophys. Acta 1624, N 1–3:115– 124.
[30] Goens S. D. 2002 The evolution of bovine viral diarrhea Can. Vet. J 43, N 12:946–954.
[31] Buckwold V. E., Beer B. E., Donis R. O. 2003 Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents Antiviral Res 60, N 1:1–15.
[32] Sousa R. 1996 Structural and mechanistic relationships between nucleic acid polymerases Trends Biochem. Sci 21, N 5:186–190.