Biopolym. Cell. 2012; 28(3):207-211.
Minireviews
Photoreactive DNA as a tool for studying topography of nucleotide excision repair complex
1Rechkunova N. I., 1Krasikova Y. S., 1Maltseva E. A., 1Lavrik O. I.
  1. Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
    8, Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090

Abstract

Nucleotide excision repair(NER) is one of the major DNA repair pathwaysin eukaryotic cells preventing genetic abnormalities caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to environmental carcinogens or chemotherapeutic drugs. In view of the extraordinarily broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. Thisreview focuses on contribution of photoaffinity labeling technique in the study of DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER.
Keywords: nucleotide excision repair, damage recognition, preincision complex, photoreactive DNA

References

[1] Friedberg E. C., Aguilera A., Gellert M., Hanawalt P. C., Hays J. B., Lehmann A. R., Lindahl T., Lowndes N., Sarasin A., Wood R. D. DNA repair: from molecular mechanism to human disease DNA Repair (Amst) 2006 5, N 8:986–996.
[2] Gillet L. C., Scharer O. D. Molecular mechanisms of mammalian global genome nucleotide excision repair Chem. Rev 2006 106, N 2:253–276.
[3] Svejstrup J. Q. Mechanisms of transcription-coupled DNA repair Nat. Rev. Mol. Cell. Biol 2002 3, N 1:21–29.
[4] Tornaletti S., Hanawalt P. C. Effect of DNA lesions on transcription elongation Biochimie 1999 81, N 1–2:139–146.
[5] Aboussekhra A., Biggerstaff M., Shivji M. K., Vilpo J. A., Moncollin V., Podust V. N., Protic M., Hubscher U., Egly J. M., Wood R. D. Mammalian DNA nucleotide excision repair reconstituted with purified protein components Cell 1995 80, N 6 P. 859–868.
[6] Araujo S. J., Tirode F., Coin F., Pospiech H., Syvaoja J. E., Stucki M., Hubscher U., Egly J. M., Wood R. D. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK Genes Dev 2000 14, N 3:349–359.
[7] Sugasawa K., Okamoto T., Shimizu Y., Masutani C., Iwai S., Hanaoka F. A multistep damage recognition mechanism for global genomic nucleotide excision repair Genes Dev 2001 15, N 5 P. 507–521.
[8] Naegeli H., Sugasawa K. The xeroderma pigmentosum pathway: decision tree analysis of DNA quality DNA Repair (Amst) 2011 10, N 7:673–683.
[9] Schweizer U., Hey T., Lipps G., Krauss G. Photocrosslinking locates a binding site for the large subunit of human replication protein A to the damaged strand of cisplatin-modified DNA Nucleic Acids Res 1999 27, N 15:3183–3189.
[10] DellaVecchia M. J., Croteau D. L., Skorvaga M., Dezhurov S. V., Lavrik O. I., Van Houten B. Analyzing the handoff of DNA from UvrA to UvrB utilizing DNA-protein photoaffinity labeling J. Biol. Chem 2004 279, N 43:45245–45256.
[11] Khodyreva S. N., Lavrik O. I. Photoaffinity labeling technique for studying DNA replication and DNA repair Curr. Med. Chem 2005 12, N 6:641–655.
[12] Rechkunova N. I., Lavrik O. I. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair Subcell. Biochem 2010 50:251–277.
[13] Maltseva E. A., Rechkunova N. I., Petruseva I. O., Vermeulen W., Scharer O. D., Lavrik O. I. Crosslinking of nucleotide excision repair proteins with DNA containing photoreactive damages Bioorg. Chem 2008 36, N 2:77–84.
[14] Maltseva E. A., Rechkunova N. I., Gillet L. C., Petruseva I. O., Scharer O. D., Lavrik O. I. Crosslinking of the NER damage recognition proteins XPC-HR23B, XPA and RPA to photoreactive probes that mimic DNA damages Biochim. Biophys. Acta 2007 1770, N 5:781–789.
[15] Petruseva I. O., Tikhanovich I. S., Chelobanov B. P., Lavrik O. I. RPA repair recognition of DNA containing pyrimidines bearing bulky adducts J. Mol. Recognit 2008 21, N 3:154–162.
[16] Buterin T., Meyer C., Giese B., Naegeli H. DNA quality control by conformational readout on the undamaged strand of the double helix Chem. Biol 2005 12, N 8:913–922.
[17] Maillard O., Solyom S., Naegeli H. An aromatic sensor with aversion to damaged strands confers versatility to DNA repair PLoS Biol 2007 5, N 4 e79.
[18] Min J. H., Pavletich N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein Nature 2007 449, N 7162:570–575.
[19] Geacintov N. E., Broyde S., Buterin T., Naegeli H., Wu M., Yan S., Patel D. J. Thermodynamic and structural factors in the removal of bulky DNA adducts by the nucleotide excision repair machinery Biopolymers 2002 65, N 3:202–210.
[20] Krasikova Y. S., Rechkunova N. I., Maltseva E. A., Petruseva I. O., Silnikov V. N., Zatsepin T. S., Oretskaya T. S., Scharer O. D., Lavrik O. I. Interaction of nucleotide excision repair factors XPC-HR23B, XPA, and RPA with damaged DNA Biochemistry (Mosc) 2008 73, N 8:886–896.
[21] Krasikova Y. S., Rechkunova N. I., Maltseva E. A., Petruseva I. O., Lavrik O. I. Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair Nucleic Acids Res 2010 38, N 22 P. 8083–8094.
[22] Meisenheimer K. M., Koch T. H. Photocross-linking of nucleic acids to associated proteins Crit. Rev. Biochem. Mol. Biol 1997 32, N 2:101–140.
[23] Nakano T., Katafuchi A., Shimizu R., Terato H., Suzuki T., Tauchi H., Makino K., Skorvaga M., Van Houten B., Ide H. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress Nucleic Acids Res 2005 33, N 7:2181–2191.
[24] Wakasugi M., Sancar A. Order of assembly of human DNA repair excision nuclease J. Biol. Chem 1999 274, N 26 P. 18759–18768.
[25] Volker M., Mone M. J., Karmakar P., van Hoffen A., Schul W., Vermeulen W., Hoeijmakers J. H., van Driel R., van Zeeland A. A., Mullenders L. H. Sequential assembly of the nucleotide excision repair factors in vivo Mol. Cell 2001 8, N 1:213–224.
[26] Tapias A., Auriol J., Forget D., Enzlin J. H., Scharer O. D., Coin F., Coulombe B., Egly J. M. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors J. Biol. Chem 2004 279, N 18:19074–19083.
[27] Orelli B., McClendon T. B., Tsodikov O. V., Ellenberger T., Niedernhofer L. J., Scharer O. D. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways J. Biol. Chem 2010 285, N 6 P. 3705–3712.
[28] Lavrik O. I., Kolpashchikov D. M., Weisshart K., Nasheuer H. P., Khodyreva S. N., Favre A. RPA subunit arrangement near the 3'-end of the primer is modulated by the length of the template strand and cooperative protein interactions Nucleic Acids Res 1999 27, N 21:4235–4240.
[29] Missura M., Buterin T., Hindges R., Hubscher U., Kasparkova J., Brabec V., Naegeli H. Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair EMBO J 2001 20, N 13:3554–3564.
[30] Salas T. R., Petruseva I., Lavrik O., Bourdoncle A., Mergny J. L., Favre A., Saintome C. Human replication protein A unfolds telomeric G-quadruplexes Nucleic Acids Res 2006 34, N 17 P. 4857–4865.