Biopolym. Cell. 2011; 27(6):453-458.
Structure and Function of Biopolymers
Sensitivity of neurodegenerative mutants of Drosophila melanogaster from Swiss cheese group to the oxidative stress conditions
1Mohylyak I. I., 1Matiytsiv N. P., 1Hrunyk N. I., 1Chernyk Ya. I.
  1. Ivan Franko National University of L'viv
    4, Hrushevskoho Str., Lviv, Ukraine, 79005

Abstract

Aim. To investigate sensitivity of the D. melanogaster neurodegenera- tive mutants from Swiss cheese group to oxidative stress (OS). Methods. Measuring the life-span, OS resistance, level of lipid peroxidation products, and the number of dophaminergic neurons. Results. We have found decreased life-span, increased sensitivity to OS, increased formation of LPP and degeneration of dophaminergic neurons in brain tissue. Conclusions. Neurodegeneration is associated with the free radical oxidation and is accompanied by accumulation of LPP and increased sensitivity to OS.
Keywords: drosophila, neurodegeneration, dophamin, oxidative stress

References

[1] Fedyn A. Oxidative stress and use of antioxidants in neurology Atmosfera. Neurological diseases 2002 N 1:15–18.
[2] Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer Biochem. J 1996 313, Pt 1 P. 17–29.
[3] Vladimirov Y., Archakov A. Peroxidation of lipids in biological membranes M.: Nauka, 1972 272 p.
[4] Husyev V. Free-radical theory of aging in gerontological paradigm The Successes of Gerontology 2000 N 4 P. 25–36.
[5] Dilman V. M. Four models of medicine M.: Medicine, 1987 288 p.
[6] Durnyev A., Seredenyn A. Mutagenes. Screening and pharmacological prevention of exposure M.: Medicine, 1998 P. 220–274.
[7] Kretzschmar D. Neurodegenerative mutants in Drosophila: a means to identify genes and mechanisms involved in human diseases? Invert. Neurosci 2005 5, N 3–4 P. 97–109.
[8] Cauchi R. J., van den Heuvel M. The fly as a model for neurodegenerative diseases: is it worth the jump? Neurodegener. Dis 2006 3, N 6 P. 338–356.
[9] Ivanov Y., Pohorelyuk O. Handling of medical and biological research M.: Medicine, 1991 129 p.
[10] Matiytsiv N. Genetic mapping of Drosophila melanogaster Xbound neurodegenerative mutations in. Visnyk of L'viv Univ. Biology series 2005 Is. 39 :54–59.
[11] Botella J. A., Ulschmid J. K., Gruenewald C., Moehle C., Kretzschmar D., Becker K., Schneuwly S. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration Curr. Biol 2004 14, N 9:782–786.
[12] Medvedyev N. Practical genetics M.: Nauka, 1966 244 p.
[13] Bilokon E. Genetical experiment in Drosophila investigations Lviv.: Vyshcha Shkola, 1979 108 p.
[14] Sharma S. K., Babitch J. A. Application of Bradford's protein assay to chick brain subcellular fractions J. Biochem. Biophys. Methods 1980 2, N 4 P. 247–250.
[15] Jazwinski S. M. Longevity, genes, and aging Science 1996 273, N 5271 P. 54–59.
[16] Dean R. T., Fu S., Stocker R., Davies M. J. Biochemistry and pathology of radical-mediated protein oxidation Biochem. J 1997 324, Pt 1 P. 1–18.
[17] Helfrich-Forster C. Immunohistochemistry in Drosophila: sections and whole mounts Methods Mol. Biol 2007 362 P. 533–547.
[18] Mockett R. J., Bayne A. C., Sohal B. H., Sohal R. S. Biochemical assay of superoxide dismutase activity in Drosophila Methods Enzymol 2002–349 P. 287–292.
[19] Sgraja T., Ulschmid J., Becker K., Schneuwly S., Klebe G., Reuter K., Heine A. Structural insights into the neuroprotectiveacting carbonyl reductase Sniffer of Drosophila melanogaster J. Mol. Biol 2004 342, N 5 P. 1613–1624.
[20] Lee Y. M., Misra H. P., Ayala F. J. Superoxide dismutase in Drosophila melanogaster: biochemical and structural characterization of allozyme variants Proc. Natl Acad. Sci. USA 1981 78, N 11 P. 7052–7055.
[21] Fang Y. Z., Yang S., Wu G. Free radicals, antioxidants, and nutrition Nutrition 2002 18, N 10 P. 872–879.
[22] Mollace V., Nistico G. Release of nitric oxide from astroglial cells: a key mechanism in neuroimmune disorders Adv. Neuroimmunol 1995 5, N 4 P. 421–430.
[23] Vila M., Przedborski S. Genetic clues to the pathogenesis of Parkinson's disease Nat. Med 2004 10, Suppl P. S58–S62.
[24] Botella J. A., Bayersdorfer F., Schneuwly S. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson's disease Neurobiol. Dis 2008 30, N 1 P. 65–73.
[25] Gruenewald C., Botella J. A., Bayersdorfer F., Navarro J. A., Schneuwly S. Hyperoxia-induced neurodegeneration as a tool to identify neuroprotective genes in Drosophila melanogaster Free Radic. Biol. Med 2009 46, N 12 P. 1668–1676.
[26] Whitworth A. J., Theodore D. A., Greene J. C., Benes H., Wes P. D., Pallanck L. J. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease Proc. Natl Acad. Sci. USA 2005 102, N 22 P. 8024–8029.
[27] Cantera R., Nassel D. R. Segmental peptidergic innervation of abdominal targets in larval and adult dipteran insects revealed with an antiserum against leucokinin I Cell. Tissue. Res 1992 269, N 3 P. 459–471.