Biopolym. Cell. 2011; 27(5):398-403.
Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli
1Rubtsov M. A., 1Glukhov S. I., 3Allinne J., 3Pichugin A., 3Vassetzky Y. S., 1, 2Razin S. V., 2Iarovaia O. V.
  1. M. V. Lomonosov Moscow State University
    Leninskie Gory, Moscow, Russian Federation, 119991
  2. Institute of Gene Biology, Russian Academy of Sciences
    34/5, Vavilova Str., Moscow, Russian Federation, 119334
  3. CNRS UMR 8126, Univ. Paris-Sud 11, Institut Gustave Roussy
    39, Camille-Desmoulins Str., 94805 Villejuif, France

Abstract

AML1 and ETO genes are known partners in the t(8,21) translocation associated with the treatment-related leukaemias in the patients receiving chemotherapy with DNA-topoisomerase II (topo II) poisons. Aim. To determine whether the genes AML1 and ETO are in close proximity either permanently or temporarily in the nucleus. Methods. 3D FISH. Results. We found that in 5 % of untreated cells, alleles of AML1 and ETO are in close proximity. This number increased two-fold in the cells treated with the topo II poison etoposide. Surprisingly, in more than 50 % of the cases observed, co-localization of the genes occurred at the nucleoli surface. We found also that the treatment of cells triggers preferential loading of RAD51 onto bcr of the AML1 and ETO genes. Conclusions. Our results suggest that the repair of DNA lesions introduced by topoisomerase II poisons may be mediated simultaneously by multiple mechanisms, which may be the cause of mistakes resulting in translocations.
Keywords: DNA-topoisomerase II, nucleoli, Rad51, AML1, ETO

References

[1] Gollin S. M. Mechanisms leading to nonrandom, nonhomologous chromosomal translocations in leukemia Semin. Cancer. Biol 2007 17, N 1 P. 74–79.
[2] Osborne C. S., Chakalova L., Mitchell J. A., Horton A., Wood A. L., Bolland D. J., Corcoran A. E., Fraser P. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh PLoS Biol 2007 5, N 8 e192 P. 1763–1772.
[3] Lallemand-Breitenbach V., de The H. PML nuclear bodies Cold Spring Harb. Perspect. Biol 2010 2, N 5 a000661 P. 1–17.
[4] Lin C., Yang L., Tanasa B., Hutt K., Ju B. G., Ohgi K., Zhang J., Rose D. W., Fu X. D., Glass C. K., Rosenfeld M. G. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer Cell 2009 139, N 6 P. 1069–1083.
[5] Boisvert F. M., van Koningsbruggen S., Navascues J., Lamond A. I. The multifunctional nucleolus Nat. Rev. Mol. Cell Biol 2007 8, N 7 P. 574–585.
[6] Boulon S., Westman B. J., Hutten S., Boisvert F. M., Lamond A. I. The nucleolus under stress Mol. Cell 2010 40, N 2 P. 216–227.
[7] Shrivastav M., De Haro L. P., Nickoloff J. A. Regulation of DNA double-strand break repair pathway choice Cell Res 2008 18, N 1 P. 134–147.
[8] Bernstein K. A., Rothstein R. At loose ends: resecting a doublestrand break Cell 2009 137, N 5 P. 807–810.
[9] Lieber M. R., Gu J., Lu H., Shimazaki N., Tsai A. G. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans Subcell. Biochem 2010 50 P. 279–296.
[10] Heisig P. Type II topoisomerases–inhibitors, repair mechanisms and mutations Mutagenesis 2009 24, N 6 P. 465–469.
[11] Nucifora G., Rowley J. D. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia Blood 1995 86, N 1 P. 1–4.
[12] Miyoshi H., Shimizu K., Kozu T., Maseki N., Kaneko Y., Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1 Proc. Natl Acad. Sci. USA 1991 88, N 23 P. 10431–14034.
[13] Tighe J. E., Daga A., Calabi F. Translocation breakpoints are clustered on both chromosome 8 and chromosome 21 in the t(8; 21) of acute myeloid leukemia Blood 1993 81, N 3 P. 592– 596.
[14] Medeiros R. B., Papenfuss K. J., Hoium B., Coley K., Jadrich J., Goh S. K., Elayaperumal A., Herrera J. E., Resnik E., Ni H. T. Novel sequential ChIP and simplified basic ChIP protocols for promoter co-occupancy and target gene identification in human embryonic stem cells BMC Biotechnol 2009 9 P. 59.
[15] Iannuccelli E., Mompart F., Gellin J., Lahbib-Mansais Y., Yerle M., Boudier T. NEMO: a tool for analyzing gene and chromosome territory distributions from 3D-FISH experiments Bioinformatics 2010 26, N 5 P. 696–697.
[16] Rubtsov M. A., Terekhov S. M., Razin S. V., Iarovaia O. V. Repositioning of ETO gene in cells treated with VP-16, an inhibitor of DNA-topoisomerase II J. Cell Biochem 2008 104, N 2 P. 692–699
[17] Pellicciari C., Bottone M. G., Scovassi A. I., Martin T. E., Biggiogera M. Rearrangement of nuclear ribonucleoproteins and extrusion of nucleolus-like bodies during apoptosis induced by hypertonic stress Eur. J. Histochem 2000 44, N 3 P. 247–254.
[18] Mongelard F., Bouvet P. Nucleolin: a multiFACeTed protein Trends Cell Biol 2007 17, N 2 P. 80–86.
[19] De A., Donahue S. L., Tabah A., Castro N. E., Mraz N., Cruise J. L., Campbell C. A novel interaction [corrected] of nucleolin with Rad51 Biochem. Biophys. Res. Commun 2006 344, N 1 P. 206–213.
[20] Kantidze O. L., Iarovaia O. V., Razin S. V. Assembly of nuclear matrix-bound protein complexes involved in non-homologous end joining is induced by inhibition of DNA topoisomerase II J. Cell Physiol 2006 207, N 3 P. 660–667.
[21] Kantidze O. L., Iarovaia O. V., Philonenko E. S., Yakutenko I. I., Razin S. V. Unusual compartmentalization of CTCF and other transcription factors in the course of terminal erythroid differentiation Biochim. Biophys. Acta 2007 1773, N 6 P. 924–933.
[22] Lambert S., Mizuno K., Blaisonneau J., Martineau S., Chanet R., Freon K., Murray J. M., Carr A. M., Baldacci G. Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange Mol. Cell 2010 39, N 3 P. 346–359.
[23] Li X., Heyer W. D. Homologous recombination in DNA repair and DNA damage tolerance Cell Res 2008 18, N 1 P. 99– 113.
[24] Rodrigue A., Lafrance M., Gauthier M. C., McDonald D., Hendzel M., West S. C., Jasin M., Masson J. Y. Interplay between human DNA repair proteins at a unique double-strand break in vivo EMBO J 2006 25, N 1 P. 222–231.