Biopolym. Cell. 2009; 25(2):110-114.
Cell Biology
The research of neurospecific proteins and lysosomal peptidehydrolases in frontal neocortex during forming conditioned reaction of active avoiding of rats
1Drozdov A. L., 2Chorna V. I., 1Koshelev O. S., 1Vyatkin O. K.
  1. Dnipropetrovs'k State Medical Academy
    9, Dzerzhyinskoho Str., Dnipropetrovs'k, Ukraine, 49044
  2. Dnipropetrovsk National University Oles Gonchar
    72, Gagarin Av., Dnipropetrovs'k, Ukraine, 49050

Abstract

Dynamics of the activity of neuronal cell adhesion molecule (NCAM) and lysosomal cysteine cathepsins B, L, H was researched in frontal neocortex of rat brain during forming a conditioned reaction of active avoiding. The quantitative estimation of NCAM content in the neocortex membrane fraction was carried on by ELISA in 3, 7, 14 and 21 days after starting animals’ training. The dynamics correlation between the NCAM content increasing and cysteine cathepsins activity was obtained, especially for aminopeptidase cathepsin H during the process of memory engram forming in frontal neocortex of rat brain.
Keywords: NCAM, cysteine cathepsins, learning, memory

References

[1] Ashmarin I. P. Neyrochimiya M.: Izd-vo In-ta biomed. chimii RAMN, 1996 470p.
[2] Nakanishi H. Microglial functions and proteases. Mol Neurobiol. 2003;27(2):163-76.
[3] Kruglikov R. I. Neyrochimicheskie mechanizmy obucheniya i pamyati M.: Nauka, 1981 211p.
[4] Sakisaka T., Takaj Y. Cell adhesion molecules in CNS J. Cell Sci 2005 118, N 23:5407–5410.
[5] Washbourne P., Dityatev A., Sxheiffele P., Biderer T. Cell adhesion molecules in synapse formation J. Neurosci 2004 42:9244–9249.
[6] Stoka V., Turk B., Turk V. Lysosomal cystein proteases: structural features and their role in apoptosis IUBMB Life 2005 57, N 4–5:347–353.
[7] Derkachev V. V. Molekulyarnye i kletochnye mechanizmy pamyati M.: Medizina, 1977 256p.
[8] Artal-Sanz P., Tavernakis N. Proteolytic mechanisms in neurotic cell death and neurodegeneration FEBS Lett 2005 579:3287–3296.
[9] Guicciardi M., Leist M., Gores G. Lysosomes in cell death Oncogene 2004 23:2881–2890.
[10] Nakamishi H., Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev. 2003;2(4):367-81.
[11] Mohamed M. M., Sloane B. Cysteine cathepsins: Multifunctional enzymes in cancer Nat Rev Cancer. 2006 6:764–775.
[12] Ibsen S., Beresin V., Norgoard-Pedersen B., Bock E. Enzyme linked immunosorbent assay of D2-glycoprotein J. Neurochem 1983 N 4:356–362.
[13] Barrett A. J., Kirscke H. Cathepsin B, cathepsin H and cathepsin L Meth. Enzymol 1981 80:535–561.
[14] Berezin V. A., Chornaya V. I., Reva A. D., Smagina L. D. Purification and some properties of thiol-activated cathepsin from bovine cerebral hemispheres and cerebellum. Ukr. Biokhim. Zh. 1982; 54(3):249–253.
[15] Chornaya V. I., Reva A. D. Cathepsin H activity in the human brain and head tumours. Ukr Biokhim Zh. 1989;61(5):47-50.
[16] Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 1976 72:248–250.
[17] Lakin G. F. Biometriya M.: Vyssh. shk., 1990 352 p.
[18] Yamagata M., Weiner J., Sanes J. Synaptic adhesion molecules. Mol. Neurobiol. 2003; 23:167–176.