Biopolym. Cell. 2008; 24(6):453-462.
Structure and Function of Biopolymers
Noncanonical complexes of mammalian eEF1A with various deacylated tRNAs
1Futernyk P. V., 1Negrutskii B. S., 1El'ska G. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The formation of noncanonical complexes of two eEF1A isoforms with different types of deacylated tRNAs was examined and apparent dissociation constants were measured. A higher affinity to tRNA was found for the tissue specific isoform of elongation factor eEF1A2, as compared with that of eEF1A1. For the first time the formation of noncanonic complex of eEF1A with initiator tRNAiMet was found to be possible. A specific role of some tRNA sites in the interaction with eEF1A was discovered.
Keywords: translation, elongation factor 1A, channeling

References

[1] Ryazanov, A. G., Ovchinnikov, L. P., Spirin, A. S. Development of structural organization of proteinsynthesizing machinery from prokaryotes to eukaryotes Biosystems 1987 20:275–288.
[2] Negrutskii B. S., Deutscher M. P. Channeling of aminoacyltRNA for protein synthesis in vivo Proc. Nat. Acad. Sci. USA 1991 88:4991–4995.
[3] Negrutskii B. S., El'skaya A. V. Eukaryotic translation elongation factor 1A: structure, expression, functions, and possible role in aminoacyl-tRNA channeling Progr. Nucl. Acid Res. Mol. Biol 1998 60:47–78.
[4] Petrushenko Z. M., Negrutskii B. S., Ladokhin A. S., Budkevich T. V., Shalak V. F., El`skaya A. V. Evidence for the formation of an unusual ternary complex of rabbit liver EF-1a with GDP and deacylated tRNA FEBS Lett 1997 407 P. 13–17.
[5] Petrushenko Z. M., Budkevich T. V., Shalak V. F., Negrutskii B. S., El'skaya A. V. Novel complexes of mammalian translation elongation factor eEF1A*GDP with uncharged tRNA and aminoacyl-tRNA synthetase. Implications for tRNA channeling Eur. J. Biochem 2002 269:4811–4818.
[6] Futernyk P. V., Pogribna A. P., Petrushenko Z. M., Negrutski B. S., El'skaya G. V. Investigation of the complexes of elongation factor 1A with tRNASer and seryl-tRNA synthetase Biopolym. Cell. 2004; 20(1-2):17-23
[7] Newbery H. J., Loh D. H., O'Donoghue J. E., Tomlinson V. A. L., Chau Y.-Y., Boyd J. A., Bergmann J. H., Brownstein D., Abbott C. M. Translation elongation factor eEF1A2 is essential for post-weaning survival in mice J. Biol. Chem 2007 282:28951–28959.
[8] Sternbach H., von der Haar F., Schlimme E., Gaertner E., Cramer F. Isolation and properties of tRNA nucleotidyl transferase from yeast Eur. J. Biochem 1971 22:166–172.
[9] Brungraber E. F. A simplified procedure for the preparation of «soluble» RNA from rat liver Biochem. Biophys. Res. Communs 1962 8:1–3.
[10] Silberclang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs Meth. Enzymol 1979 59:58–109.
[11] Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning: a laboratory manual New York: Cold Spring Harbor Lab. press, 1989.
[12] Louie A., Ribeiro S. N., Reid B. R., Jurnak F. Relative affinities of all Escherichia coli aminoacyl-tRNAs for elongation factor Tu-GTP. J Biol Chem. 1984;259(8):5010-6.
[13] LaRiviere F. J., Wolfson A. D., Uhlenbeck O. C. Uniform binding of amynoacyl-tRNAs to elongation factor Tu by thermodynamic compensation Science 2001 294:165–168.
[14] Sanderson L. E., Uhlenbeck O. C. The 51-63 pair of tRNA confers specificity for binding by EF-Tu RNA 2007:835–840.
[15] Budkevich T. V., Timchenko A. A., Tiktopulo E. I., Negrutskii B. S., Shalak V. F., Petrushenko Z. M., Aksenov V. L., Willumeit R., Kohlbrecher J., Serdyuk I. N., El'skaya A. V. Extended conformation of mammalian translation elongation factor 1A in solution. Biochemistry. 2002;41(51):15342-9.
[16] Stortchevoi A., Varshney U., RajBhandary U. L. Common location of determinants in initiator transfer RNAs for initiator-elongator discrimination in bacteria and in eukaryotes. J Biol Chem. 2003;278(20):17672-9.
[17] Drabkin H. J., Estrella M., RajBhandary U. L. Initiatorelongator discrimination in vertebrate tRNAs for protein synthesis. Mol Cell Biol. 1998;18(3):1459-66.
[18] Kiesewetter S., Ott G., Sprinzl M. The role of modified purine 64 in initiator/elongator discrimination of tRNAiMet from yeast and wheat germ Nucl. Acids Res 1990 18:4677–4682.
[19] Futernyk P. V., Negrutskii B. S., El'skaya G. V. Formation of noncanonical complexes tRNKiMet and tRNKeMet of initiation factor 2 mammals. Nauk. visn. Cherniv. unstitut: Zb. nauk. prats (Biolohiya) Chernivtsi: Ruta, 2006 Vyp. 297 3–7.