Biopolym. Cell. 2007; 23(1):54-59.
Bioinformatics
Phylogenetic analysis of structural preconditions of autogenous control of gene expression of rplJL operon at the translation level in γ-proteobacteria
1Kroupskaya I. V., 2Paton E. B.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Institute of Cell Biology and Genetic Engineering, NAS of Ukraine
    148, Akademika Zabolotnogo Str., Kyiv, Ukraine, 03680

Abstract

Phylogenetic analysis of structural preconditions of autogenous control regulation of gene expression of rplJL operon at the translation level in γ-proteobacteria has been performed. The structural preconditions of both L10 ribosomal protein and its RNA targets, which determine the possibility and the specificity of L10-RNA interaction have been studied. Phylogenetic comparison provides evidence for similarity of structural preconditions of the feedback regulation mechanism inγ-proteobacteria and Escherichia coli, except for the endosimbionts.
Keywords: autogenous control, gene expression, L10 ribosomal protein, mRNA, interaction site

References

[1] Post LE, Strycharz GD, Nomura M, Lewis H, Dennis PP. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit beta in Escherichia coli. Proc Natl Acad Sci U S A. 1979;76(4):1697-701.
[2] Zengel JM, Lindahl L. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. Prog Nucleic Acid Res Mol Biol. 1994;47:331-70.
[3] Nomura M. Regulation of the synthesis of ribosomes and ribosomal components. Symp of the Soc for Gen Microbiol. Regulation of Gene Expression. Eds I. Both, C. Higgins. Cambridge: Univ. press, 1986: 199-220.
[4] Sor F, Nomura M. Cloning and DNA sequence determination of the L11 ribosomal protein operon of Serratia marcescens and Proteus vulgaris: translational feedback regulation of the Escherichia coli L11 operon by heterologous L1 proteins. Mol Gen Genet. 1987;210(1):52-9.
[5] Climie SC, Friesen JD. Feedback regulation of the rplJL-rpoBC ribosomal protein operon of Escherichia coli requires a region of mRNA secondary structure. J Mol Biol. 1987;198(3):371-81.
[6] Friesen JD, Tropak M, An G. Mutations in the rpIJ leader of Escherichia coli that abolish feedback regulation. Cell. 1983;32(2):361-9.
[7] Paton EB. Peculiarties of expression regulation of the rplKAJL gene cluster. Biopolym Cell. 1990; 6(5):5-23.
[8] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-80.
[9] Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9(1):133-48.
[10] Matzura O, Wennborg A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci. 1996;12(3):247-9.
[11] Christensen T, Johnsen M, Fiil NP, Friesen JD. RNA secondary structure and translation inhibition: analysis of mutants in the rplJ leader. EMBO J. 1984;3(7):1609-12.
[12] Zhivolup AN, Paton EB. The common mechanism for regulation of the enterobacteria rplJL operon is confirmed by the conserved structural organization of the leader region of mRNA. The regulatory consensus of the leader region of enterobacteria L10-L12 mRNA. Dokl Akad Nauk. 1995;340(1):104-7.
[13] Paton EB, Zhivolup AN. Presence of the binding site for the ribosomal protein L10 in the untranslated leader sequence upstream from the rplJ gene in Thermotoga maritima is evidence for autogenous control of the expression of this gene. Genetika. 1996;32(1):140-5.
[14] Paton EB, Zhivolup AN. Evidence of autogenic regulation of rplJ gene expression in Thermotoga maritima and possibility of autogenic cross-regulation of expression between T. maritima and enterobacteria. Genetika. 1997;33(10):1341-4.
[15] Zhivolup AN, Paton EB. The common mechanism for regulation of the enterobacteria rplJL operon is confirmed by the conserved structural organization of the leader region of mRNA. The regulatory consensus of the leader region of enterobacteria L10-L12 mRNA. Dokl Akad Nauk. 1995;340(1):104-7.
[16] Petersen C. Long-range translational coupling in the rplJL-rpoBC operon of Escherichia coli. J Mol Biol. 1989;206(2):323-32.
[17] Charles H, Mouchiroud D, Lobry J, Gon?alves I, Rahbe Y. Gene size reduction in the bacterial aphid endosymbiont, Buchnera. Mol Biol Evol. 1999;16(12):1820-2.
[18] Clark MA, Baumann L, Thao ML, Moran NA, Baumann P. Degenerative minimalism in the genome of a psyllid endosymbiont. J Bacteriol. 2001;183(6):1853-61.
[19] Klein DJ, Schmeing TM, Moore PB, Steitz TA. The kink-turn: a new RNA secondary structure motif. EMBO J. 2001;20(15):4214-21.
[20] Matsumura S, Ikawa Y, Inoue T. Biochemical characterization of the kink-turn RNA motif. Nucleic Acids Res. 2003;31(19):5544-51.
[21] R?zga F, Spackova N, R?blova K, Koca J, Leontis NB, Sponer J. Ribosomal RNA kink-turn motif--a flexible molecular hinge. J Biomol Struct Dyn. 2004;22(2):183-94.