Biopolym. Cell. 2002; 18(5):363-376.
Reviews
Amperometric biosensors. Modern technologies and commercial variants
1Dzyadevych S. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The advantages of modern microsystem technologies as applied to the production of amperometric biosensors (including manufacture of transducers, immobilization of biological material, combining different procedures in one technological cycle) are analyzed. The modern commercial systems based on amperometric biosensors and the fields of their application are described.

References

[1] Dzyadevych SV. Amperometric biosensors. Key work principles and features of transducers of different generations. Biopolym Cell. 2002; 18(1):13-25.
[2] Fluitman J. Microsystems technology: objectives. Sensors and Actuators A: Physical. 1996;56(1-2):151–66.
[3] Zinner H. Microsystems - the European approach. Sensors and Actuators A: Physical. 1995;46(1-3):1–7.
[4] Abraham M, Ehrfeld W, Hessel V, K?mper KP, Lacher M, Picard A. Microsystem technology: Between research and industrial application. Microelectron Eng. 1998;41-42:47–52.
[5] Schultze JW, Tsakova V. Electrochemical microsystem technologies: from fundamental research to technical systems. Electrochim Acta. 1999;44(21-22):3605–27.
[6] Rapp R, Hoffmann W, S?? W, Ache HJ, G?lz H. Performance of an electrochemical microanalysis system. Electrochim Acta. 1997;42(20-22):3391–8.
[7] Weber SG. Signal-to-noise ratio in microelectrode-array-based electrochemical detectors. Anal Chem. 1989;61(4):295-302.
[8] Cespedes F, Alegret S. New materials for electrochemical sensing: glucose biosensors based on rigid carbon-polymer biocomposites. Food Technol Biotechnol. 1996; 34(4): 143-6.
[9] Atanasov P, Gamburzev S, Wilkins E. Needle-type glucose biosensors based on a pyrolyzed cobalt-tetramethoxy-phenylporphyrin catalytic electrode. Electroanalysis. 1996; 8(2): 158-64.
[10] Khan GF, Wernet W. Platinization of Shapable Electroconductive Polymer Film for an Improved Glucose Sensor. J Electrochem Soc. 1996;143(10):3336-42.
[11] Kr?ger S, Turner APF. Solvent-resistant carbon electrodes screen printed onto plastic for use in biosensors. Anal Chim Acta. 1997;347(1-2):9–18.
[12] Silber A, Bisenberger M, Br?uchle C, Hampp N. Thick-film multichannel biosensors for simulataneous amperometric and potentiometric measurements. Sensors and Actuators B: Chemical. 1996;30(2):127–32.
[13] Khan GF. Organic charge transfer complex based printable biosensor. Biosens Bioelectron. 1996;11(12):1221-7.
[14] Albareda-Sirvent M, Merko?i A, Alegret S. Configurations used in the design of screen-printed enzymatic biosensors. A review. Sensors and Actuators B: Chemical. 2000;69(1-2):153–63.
[15] Lorenzo E, Pariente F, Hern?ndez L, Tobalina F, Darder M, Wu Q, et al. Analytical strategies for amperometric biosensors based on chemically modified electrodes. Biosens Bioelectron. 1998;13(3-4):319–32.
[16] Silber A, Hampp N, Schuhmann W. Poly(methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors. Biosens Bioelectron. 1996;11(3):215-23.
[17] M?d?ra? MB, Buck RP. Miniaturized biosensors employing electropolymerized permselective films and their use for creatine assays in human serum. Anal Chem. 1996;68(21):3832-9.
[18] Sirkar K, Pishko MV. Amperometric Biosensors Based on Oxidoreductases Immobilized in Photopolymerized Poly(ethylene glycol) Redox Polymer Hydrogels. Anal Chem. 1998;70(14):2888–94.
[19] Muguruma HK, Karube I. Plasma-polymerised films for biosensors. Trends Anal Chem. 1999;18:62-8.
[20] Wohltjen H. Chemical microsensors and microinstrumentation. Anal Chem. 1984;56(1):87A–103A.
[21] Vidal JC, Garc?a E, M?ndez S, Yarnoz P, Castillo JR. Three approaches to the development of selective bilayer amperometric biosensors for glucose by in situ electropolymerization. Analyst. 1999;124(3):319-24.
[22] Kranz C, Wohlschlager H, Schmidt H-L, Schuhmann W. Controlled electrochemical preparation of amperometric biosensors based on conducting polymer multilayers. Electroanalysis. 1998. 10(8):546-52.
[23] L?tzbeyer T, Schuhmann W, Schmidt H-L. Electron transfer principles in amperometric biosensors: direct electron transfer between enzymes and electrode surface. Sensors and Actuators B: Chemical. 1996;33(1-3):50–4.
[24] Yamato H, Koshiba T, Ohwa M, Wernet W, Matsumura M. A new method for dispersing palladium microparticles in conducting polymer films and its application to biosensors. Synthetic Metals. 1997;87(3):231–6.
[25] Elrhazi M, Deslouis C, Nlgretto JM, Frouji A. Electrochemical behaviour of carbon paste electrode modified by fibrinogen for biosensor. An impedance study. Quim Anal. 1997; 16:49-53.
[26] Immobilized enzymes: an introduction and applications in biotechnology. Ed. M. D. Trevan-New York: John Wiley and Sons, 1980.
[27] Guilbault GG, Kramer DN. Fluorometric system employing immobilized cholinesterase for assaying anticholinesterase compounds. Anal Chem. 1965;37(13):1675-80.
[28] Barlett PN, Cooper JM. A review of the immobilization of enzymes in electropolymerized films. J Electroanal Chem. 1993;362(1-2):1–12.
[29] Naarmann H, Theophilou N. New process for the production of metal-like, stable polyacetylene. Synthetic Metals. 1987;22(1):1–8.
[30] Kobayashi M, Chen J, Chung T-C, Moraes F, Heeger AJ, Wudl F. Synthesis and properties of chemically coupled poly(thiophene). Synthetic Metals. 1984;9(1):77–86.
[31] Ratcliffe NM. Polypyrrole-based sensor for hydrazine and ammonia. Anal Chim Acta. 1990;239:257–62.
[32] Sirkar KK, Lloyd DR. New membrane materials and processes for separation. AIChE Symp. Series. New York: Amer. Inst. Chem. Eng., 1988. Vol. 84(261): 177 p.
[33] Slomkowski S, Kowalczyk M, Trznadel M, Kryszewski M. Two-Dimensional Latex Assemblies for Biosensors. Hydrogels and Biodegradable Polymers for Bioapplications. 1996;172–86.
[34] Reddy SM, Vadgama PM. Membranes to improve amperometric sensor characteristics. Handbook of biosensors and electronic noses: medicine, food, and environment. Ed. E. Kress-Rogers. New York: CRC press, 1997: 111-35.
[35] Grisel A. Microelectronic devices. Handbook of biosensors and electronic noses: medicine, food, and environment. Ed. E. Kress-Rogers. New York: CRC press, 1997: 137-47.
[36] Scouten W, Luong J, Stephenbrown R. Enzyme or protein immobilization techniques for applications in biosensor design. Trends Biotechnol. 1995;13(5):178–85.
[37] Hianik T, Snejdarkova M, Cervenanska Z, Miernik A, Krawczyk TKV. Electrochemical biosensors with supporte bilayer lipid membranes based on avidin-biotin interaction. Chem Analyt. 1997; 42: 901-6.
[38] Chen Q, Kobayashi Y, Takeshita H, Hoshi T, Anzai J. Avidin-biotin system-based enzyme multilayer membranes for biosensor applications: optimisation of loading of choline esterase and choline oxidase in the bienzyme membrane for acetylcholine biosensors. Electroanalysis. 1998; 10(2): 94-7.
[39] Yon Hin BFY, Lowe CR. Amperometric response of polypyrrole entrapped bienzyme films. Sensors and Actuators B: Chemical. 1992;7(1-3):339–42.
[40] Cooper J., Hall EA. Electrochemical response of an enzyme-loaded polyaniline film. Biosens Bioelectron. 1992;7(7):473–85.
[41] Dziadevich SV, Doldatkin AP, RossokhatyÄ­ VK, Shram NF, Shul'ga AA, Strikha VI. [Amperometric enzyme biosensor with a glucose oxidase-polyaniline membrane]. Ukr Biokhim Zh. 1994;66(3):54-60.
[42] Palleschi G, Moscone D, Compagnone D. Biosensori elettrochimici in Biomedicina. Caleidoscopio Italiano. Genova: MedicalSystems S.p.A., 1997; 112: 6.
[43] Scheller FW, Pfeiffer D. Commercial devices based on amperometric biosensors. Handbook of biosensors and electronic noses: medicine, food, and environment. Ed. E. Kress-Rogers. New York: CRC press, 1997: 245-56.
[44] EKSAN-G. Instructions for use and operation. Panev??ys, 1990.
[45] Lauks IR. Microfabricated Biosensors and Microanalytical Systems for Blood Analysis. Acc Chem Res. 1998;31(5):317–24.
[46] Pat. German 43 352413. Verfahren zur kontinuierlichen Analyse von Bestandteilen einer Flussigkeit. A. Schwock, P. Abel. Publ. 1991.
[47] Armour JC, Lucisano JY, McKean BD, Gough DA. Application of chronic intravascular blood glucose sensor in dogs. Diabetes. 1990;39(12):1519-26.
[48] Koudelka M, Rohner-Jeanrenaud F, Terrettaz J, Bobbioni-Harsch E, de Rooij NF, Jeanrenaud B. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors. Biosens Bioelectron. 1991;6(1):31-6.
[49] Bradley J, Schmid RD. Optimisation of the biosensor for in situ fermentation monitoring of glucose concentration. Biosens Bioelectron. 1991;6(8):669–74.
[50] Luong JH, Bouvrette P, Male KB. Developments and applications of biosensors in food analysis. Trends Biotechnol. 1997;15(9):369-77.
[51] Freshness Meter from oriental electric Co. Ltd. Chemical Sensors. 1992. 8, N 1: 18.
[52] Nagai R, Yaoita M, Yoshida Y, Ikariyama Y, Yamauchi S. High-performance biosensor for cholesterol. Proc. of 9th Chem. Sensor Symp. Aoyama: Gakuin Univ. press, 1989: 17-20.
[53] Hikuma M, Yasuda T. Microbial sensors for estimation of biochemical oxygen demand and determination of glutamate. Methods Mosbach Enzymol. San Diego: Acad, press, 1998. Vol. 137, pt D: 124-31.
[54] Riedel K, Neumann B, Scheller F. Mikrobielle Sensoren auf Basis von Respirationsmessungen. Chemie Ingenieur Technik. 1992;64(6):518–28.
[55] White SF, Turner APF. Mediated amperometric biosensors. Handbook of biosensors and electronic noses: medicine, food, and environment. Ed. E. Kress-Rogers. New York: CRC press, 1997: 227-44.
[56] Skladal P, Mascini M. Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocyanine-modified composite electrodes and immobilized cholinesterases. Biosens Bioelectron. 1992;7(5):335–43.
[57] Gogol EV, Evtugyn GA, Marty JL, Budnikov HC, Winter VG. Amperometric biosensors based on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors. Talanta. 2000;53(2):379-89.