Biopolym. Cell. 1999; 15(5):343-359.
Reviews
Genome variability in plant somatic cells. 5. Growth and mitotic regime variations during adaptation to maintenance in vitro
1Kunakh V. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Data on the dynamics of plant cell populations in the process of their adaptation to the growth conditions in vitro have been reviewed. In the course of the passaged culture obtaining a period of strain habituation being critical was discovered. Within this period (commonly the 2–8th passages) the intensive processes of cell population adaptation to autonomous growth outside an organism are evident. At this time there occur further rearrangement of physiological processes and cell population structure, even more essential versus the primary callus. The transition from the diurnal periodicity control mechanisms universal for an organism as a whole to the intracellular ones is observed. The homeostatic control mechanism specific for the population of cultured cells is established. The positive selection of cells, adapted to the in vitro existence and elimination of unadopted ones are observed. These events are concurrent with the considerable changes in the growth rate and other morphological peculiarities of the cell strain, duration of the cell cycle and mitotic activity rhythm, the rise in polymorphism (heterogeneity) of the cell population in terms of many characters. Established, adapted cell strains tend to be characterized by the stability of traits originating in the period of strain habituation. The statement is that passaged cell culture presents the unique biological system – the clone population, in which the role of organisms' part is played by the cells originally programmed as a constituent of a mutticellular organism to accomplish the certain structural and functional tasks. Apart from being useful in the known fields of application can also serve as a model to study the details of variability and adaptation as well as the evolution of cell associations of different integrity level especially upon the transition from the higher level to the tower one i. e. under the conditions of so called «regressive evolutions.

References

[1] Kunakh VA, Checheneva TN, Morgun VV. Production of callus tissues from maize plants of various genotypes. Fiziologiia rasteniy. 1980; 27(2):399-403.
[2] Wenzler H., Meins F. Mapping regions of the maize leaf capable of proliferation in culture. Somatic Embryo Genesis Carrots: Proc. Workshop (San Miniato, May 28—31, 1985). Roma, 1985:181—185.
[3] Wenzler H, Meins F. Mapping regions of the maize leaf capable of proliferation in culture. Protoplasma. 1986; 131(1):103—105.
[4] Tomes DT, Smith OS. The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theor Appl Genet. 1985;70(5):505-9.
[5] Koblitz H., Saalbach C. Kalluskulturen aus Apikalmeristemcn von Cerste (Hordeum vulgare). Biochem Physiol Pflanzen. 1976; 170:97—102.
[6] Kartel' NA, Maneshina TV. Callus formation in barley (Hordeum vulgare L.) plants of different genotype. Tsitol Genet. 1977; 11(6):486-90.
[7] Rybczynski JJ. The effect of the 2,4-D acid on callus formation and rhizogenesis of the immature embryo scutellum of di- and tetraploid rye (Secale cereale L.). Genet pol. 1978; 19(4):467—485.
[8] Rybczynski JJ1, Zdunczyk W. Somatic embryogenesis and plantlet regeneration in the genus Secale : 1. Somatic embryogenesis and organogenesis from cultured immature embryos of five wild species of rye. Theor Appl Genet. 1986;73(2):267-71.
[9] Takiko Shimada. Plant regeneration from the callus induced from wheat embryo. Jap. J. Genet. 1978. 53, N 5:371—374.
[10] Suponina S. L. Effect of nutrient medium composition on callus formation from different tissues of winter wheat. Nauch. trudy. NII s.-kh. Tsentr.-Chernozemn. polosy. 1980; 17(3):8—11.
[11] Reinert H, Kuster HJ. Diploide, chlorophylhaltige Gewebekulturen aus Blattern von Crepis capillaris (L.) Wallr. Z. Pflanzenphysiol. 1966; 54(3):213—222.
[12] Sidorenko PG, Kunakh VA. Production of Culture of Haplopappus gracilis and Crepis capillaris and their cytogenetic characteristic. Tsitol Genet. 1972; 6(6):483-86.
[13] Maryahina IY, Butenko RG Culture isolated cabbage tissue and genetic characterization of obtaining regenerated plants. Agricultural biology. 1974. 9, 2:216—227.
[14] Vnuchkova VA study tomato callus growing conditions in starter culture and cytological characterization. The culture of plant cells. Kiev: Naukova Dumka,1978:116—119.
[15] Nishiyama I, Taira T. The effects of kinetin and indole acetic acid on callus growth and organ formation in two species of Nicotiana. Japan J. Genet. 1966; 41, N 5:357—365.
[16] Trofimets LI, Volkova TV, Mirenkova NY method of tissue culture in potato. Tissue and cell cultures in plant breeding. Moscow: Kolos, 1979:123—128.
[17] Kunakh VA, Voityuk LI, Alkhimova EG, Alpatova LK. Callus tissue formation and induction of organogenesis in Pisum sativum L. Fiziologiia rasteniy. 1984; 31(3):542-8.
[18] Bagrova A. M., Yezhova T. A., Khartina G. A., Gostimskiy S. A. Obtaining long cultivated morphogenic callus and analysis of somaclonal variation in regenerant grain and vegetable varieties of peas. Vestn. Mosk. un-ta. Ser. Biologiya. 1991. 1:28—33.
[19] Bajaj YP, Gill MS. In vitro induction of genetic variability in cotton (Gossypium spp.). Theor Appl Genet. 1985; Jul;70(4):363-8
[20] Lev S. V., Bykova Ye. V., Musayev D. A. Genotypic tetraploid species on cotton growth regulators. Dokl. AN UzSSR. 1987. 5:51—53.
[21] Butenko RG, Atasov AI. On obtaining the culture of sugar-beet tissue. Dokl Akad Nauk SSSR. 1971; 197(2):477—9.
[22] Abe T., Sasahara T. Genetical control of callus formation in rice. Plant Tissue Cult.: Proc. 5 Int. Congr. Plant Tissue and Cell Cult. (Tokyo and Lake Yamanaka, July 11—16, 1982). Tokyo, 1982:419—420.
[23] Abe T, Futsuhara Y. Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.). Theor Appl Genet. 1986;72(1):3-10.
[24] Butenko P. G. Culture isolated tissues and physiology of plant morphogenesis. Moscow: Nauka, 1964. 272.
[25] Khokhlov S. S, Tyrnov V. S, Grishina Ye. V., Davoyan YA. I., Zaytseva M. I., Zverzhanskaya L. S, Selivanov A. S, Sukhanov V. M., Shishkinskaya N. A., Guseva A. I. Haploidy and Selection. Moscow: Nauka, 1976. 222.
[26] Ashanasov A. Biotechnology in plant breeding. Novosibirsk: Publishing House of the Institute of Cytology and Genetics, 1993. 241 p.
[27] Jacobsen H. J., fngensiep . W., Merit M., Kaul M. L. . Tissue culture studies in Pisum sativum. Plant Cell Cult.: Results and Perspectives. Amsterdam, 1980:319—324.
[28] Rapela M. A. Organogenesis and somatic embryogenesis in tissue culture of Argentine maize (Zea mays L.). J. Plant Physiol. 1985; 121, N 2:119—122.
[29] Goldstein CS, Kronstad WE. Tissue culture and plant regeneration from immature embryo explants of Barley, Hordeum vulgare. Theor Appl Genet. 1986;71(4):631-6.
[30] Templeton-Somers KM, Collins WW. Heritability of regeneration in tissue cultures of sweet potato (Ipomoea batatas L.). Theor Appl Genet. 1986;71(6):835-41.
[31] Ancora G, Ramulu KS, Devreux M. In vitro Culture of Anthers and Stem Internodes of Lycopersicum peruvianum: Nuclear DNA Determination in Calli and Cytological Analysis of Regenerated Plants. Zeitschr. Pflanzenphysiol. 1977. 82, N 2:377—388.
[32] Bouzid S. Polymorphisme persistant des cultures de tissus provenant de divers fragments de piusieurs especes de Citrus. C. r. Acad. sci. 1977; D284(21):2119—2121.
[33] Pandey KN, Kahlon PS. Evaluation of genotypic responses of soybean (Glycine max. L. Merrill) cultivars in vitro. Genetics. 1980; 94(4, pt 2):79—80.
[34] Nakamura C, Keller WA. Callus proliferation and plant regeneration from immature embryos of hexaploid triticale. Z. Pflanzenzucht. 1982; 88(2):137—160.
[35] Novak F, Konecna D. Somatic embryogenesis in callus and cell suspension cultures of alfalfa (Medicago sativa L.). Z. Pflanzenphysiol. 1982: 105(3):279—284.
[36] Ezhova TA, Bagrova AM, Gostimsky SA. Shoot formation in callus tissues derived from stem apices, epicotyls, stem internodes and leaves of various pea genotypes. Fiziologiia rasteniy. 1985; 32(3):513-20.
[37] Radojevic L. Tissue culture of maize Zea mays «Cudu» I. Somatic embryogenesis in the callus tissue. J. Plant Physiol. 1985. 119, N 5:435—441.
[38] Azam M, Biswas AK. Callus culturing, its maintenance and cytological variations in Trigonella foenum-graecum L. Curr. Sci. (India). 1989; 58(15):844—847.
[39] Lazar MD, Schaeffer GW, Baenziger PS. Cultivar and cultivar x environment effects on the development of callus and polyhaploid plants from anther cultures of wheat. Theor Appl Genet. 1984;67(2-3):273-7.
[40] Kalinin F. L., Sarnatskaya V. V., Polishchuk V. Ye. Tissue culture methods in plant physiology and biochemistry. Kiev: Naukova Dumka, 1980. 488 p.
[41] Sidorov VA, Piven NM, Gleba YuYu, Sytnik KM. Solanaceae somatic hybridization. Kiev: Naukova Dumka. 1985; 132 p.
[42] Sidorov V. A. Plant Biotechnology. Cellular selection. Kiev: Naukova Dumka, 1990. 280.
[43] Roper W. Callus formation from protoplasts derived from cell suspension cultures of Vicia faba L. Z. Pflanzenphysiol. 1981; 101(1):75—78.
[44] Bormatau VY, Svirshchezuskaya AM genotype differences kalusnyh cultures inbreeding sugar beet lines to the needs in the elements zhyulennya. Vesti AN BSSR, Ser. biol. 1989; 5:18-22.
[45] Dhir SK, Dhir S, Widholm JM. Regeneration of fertile plants from protoplasts of soybean (Glycine max L. Merr.): genotypic differences in culture response. Plant Cell Rep. 1992;11(5-6):285-9.
[46] Mardamshin A. G., Valiyeva P. D., Ivanirv A. Il'gulova D. F. Callus tissue of Glycyrrhiza glabra - Superproduction flavonoids. Mol. Genetics, Microbiology and Virology. 1994; 4:21.
[47] Yamada Y. Tissue culture studies on cereals. Appl. And Fundam. Aspects Plant Cell, Tissue, Organ Cult. Berlin, 1977:144—159.
[48] Malepszy S., Gaj M. Some aspects of tissue culture of barley. Barley Genet. Newslett. 1979; 9:60—62.
[49] Bajaj YP, Saini SS, Bidani M. Production of triploid plants from the immature and mature endosperm cultures of rice. Theor Appl Genet. 1980;58(1):17-8.
[50] Kraus J. E., Handro W., Dietrich S. M. C. Growth, peroxidase activity, and protein content in stem pith and callus tissues from haploid and diploid Nicotiana tabacum plants. Physiol. Plant. 1981. 51, N 2:157—162.
[51] Martins IS, Sondahl MR. Early Stages of Somatic Embryo Differentiation from Callus Cells of Bean (Phaseolus vulgaris L.) Grown in Liquid Medium. J Plant Physiol. 1984;117(2):97-103.
[52] Keyes GJ, Collins GB, Taylor NL. Genetic variation in tissue cultures of red clover. Theor Appl Genet. 1980;58(6):265-71.
[53] Keys GI, Deaton WR., Collins GB, Legg PD. Hybrid vigor in callus tissue cultures and seedlings of Nicotiana tabacum L. J. Hered. 1981; 72(3):172—174.
[54] Maeda E. Multiplication of rice cells freely suspended in vitro. Proc. Crop Sci. Soc. Japan. 1969. 38, N 3:535—546.
[55] Kerbauy GB, Hell KG, Handro W. Comparative Growth of Pith Tissue from Haploid and Diploid Plants of Nicotiana tabacum. Z Pflanzenphysiol. 1976; 79(5):455—458.
[56] Mok MC, Mok DWS, Turner JE. Reversed Activities of Cytokinin Bases and Ribonucleosides in Callus Tissues of Phaseolus lunatus L. J. Plant Physiol. 1985. 121, N 3:273—280.
[57] Mok MC, Mok DW, Armstrong DJ, Rabakoarihanta A, Kim SG. Cytokinin autonomy in tissue cultures of phaseolus: a genotype-specific and heritable trait. Genetics. 1980;94(3):675-86.
[58] Meins F, Lutz J. Tissue-specific variation in the cytokinin habituation of cultured tobacco cells. Differentiation. 1979, 15(1-3):1—6.
[59] Davidonis GH, Hamilton RH, Mumma RO. Comparative metabolism of 2,4-dichlorophenoxyacetic Acid in cotyledon and leaf callus from two varieties of soybean. Plant Physiol. 1980;65(1):94-7.
[60] Elmsheuser HA, Lein C, Neumann KH. Untersuchungen uber Bezichungen zwischen Horraongehalt und Wachstumsleistung von Explantalen verschidener Brassica-Arten in Gewebekultur. Z. Pflanzenphysiol. 1978; 88(1):25—31.
[61] Jackson JA, Lyndon RF, Cytokinin habituation in juvenile and flowering tobacco. J. Plant Physiol. 1988; 138(5):575—579.
[62] Yamada T., Shoji T., Sinoto J. Cytological studies on cultured cells. II. Formation of calli and general behavior of their cells in the tissue culture of Tradescantia paludosa. Bot. Magaz. (Tokyo). 1964; 77(918):436—447.
[63] Kallak KhI, Yarvekyul'g LYa. Morphological and cytological heterogeneity pea callus. Tsitol Genet. 1968; (5):408-14.
[64] Hallak KhYa., Yarvekyul'g LYa. Cytogenetic characterization of some strains of pea callus. Genetics of cereals and legumes. Orel, 1972:7—16.
[65] Jullien M. La culture in vitro de cellules du tissu foliaire d'Asparagus officinalis L.: obtention de souches a embryogenese permanente et regeneration de plantes entieres. Compt Rend. Acad. Sci. 1974; 279D(9):747—750.
[66] Kuna VA Cytogenetic and morphological variability of strains of tissue culture gaplopappusa during their formation. The culture of plant cells. Kiev: Naukova Dumka,1978:108—113.
[67] Radohvic LJ, Landre P, Neskovic M. Isolement de trois souches tissulaires ? partir d’embryons immatures d’Acer negundo L. Z. Pflanzenphysiol. 1980; 99(3):191—198.
[68] Chandler SF, Vasil IK. Optimization of Plant Regeneration from Long Term Embryogenic Callus Cultures of Pennisetum purpureum Schum. (Napier grass). J Plant Physiol. 1984;117(2):147-56.
[69] Seguin-Swartz G, Kott L, Kasha KJ. Development of haploid cell lines from immature barley,Hordeum vulgare, embryos. Plant Cell Rep. 1984;3(3):95-7.
[70] Tyagi AK, Bharal S, Rashid A, Maheshwari N. Plant regeneration from tissue cultures initiated from immature inflorescences of a grass,Echinochloa colonum (L.) link. Plant Cell Rep. 1985;4(3):115-7.
[71] Kucherenko LA. Morphological heterogeneity callus of rice and its relationship with the regenerative capacity. Fiziologiia rasteniy. 1993; 40(5):797—801.
[72] Rajasekaran K, Hein MB, Davis GC, Carnes MG, Vasil IK. Endogenous growth regulators in leaves and tissue cultures of Pennisetum purpureum Schum. J . Plant. Physiol. 1987; 130(1):13—25.
[73] Kerbauy GB, Monteiro WR, Kraus JE, Hell KG. Some physiological and structural aspects of cytokinin-autonomy in the callus of tobacco (Nicotiana tabacum L.). J. Plant Physiol. 1988; 132(2):218—222.
[74] Wann SR, Johnson MA, Noland TL, Carlson JA. Biochemical differences between embryogenic and nonembryogenic callus of Picea abies (L.) Karst. Plant Cell Rep. 1987;6(1):39-42.
[75] Hagege D, Kevers C, Geuns J, Gaspar T. Ethylene production and polyamine content of fully habituated sugarbeet calli. J Plant Physiol. 1994; 143(6):722—755.
[76] Kunakh VA. Polyploidy in cell and tissue culture in vitro and its possible causes. Experimental polyploidy in crop plants. Kiev: Naukova Dumka, 1974:39-56.
[77] Huang Danian, Gu Mingguang, Zhang Xueqin, Guo Caiyne, Cao Ziyi. Changing the content of nucleic acids and proteins in callus clones from maize pollen subcultures. Acta. Genet. sin. 1987; 14(2):114—120.
[78] Gokhale S. P., David S. B. Studies on two types of calli occurring in Hollarhena antidysenterica wall cultures. Geobios (India). 1987; 14, N 2—3:119—121.
[79] Ozolina NV, Kuzevanov VYa, Kotova LG, Salyaev RK. Electrophoretic studies of proteins in morphogenic and non-morphogenic calluses of spring wheat. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1995. 27(4):254-8.
[80] Mathias R-J, Brown C, Pearson D, Brooks FJ, Mukasa CA, Atkinson E. Plant transformation. Cereal transformation and tissue culture studies. Annu. Rept., 1987. ARFC. Inst. Plant. Sci., John Innes Inst. Norwich, 1988:16—17.
[81] Ben Amer IM, Worland AJ, Borner A. In vitro culture variation of wheat and rye caused by genes affecting plant growth habit in vivo. Euphytica. 1992; 61(3):233—240.
[82] vanov II, Trapeznikov VK, Kudoyarova GR. Changes in the hormonal status of wheat plants under the effect of mineral nutrition. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1994; 26(1):32-6.
[83] Vedenicheva NP, Generalova VN, Musatenko LI, Sytnik KM. A hormonal complex of Alisma plantago aquatica adapted to different water conditions. Dopovidi Nats Akad Nauk Ukrainy. 1995; (12):100-2.
[84] Brown V. Genetics of bacteria. Moscow: Nauka, 1968. 446
[85] Yepifanova OI Hormones and cell reproduction. Moscow: Nauka, 1965. 242.
[86] Yepifanova O. I. Terskikh V. V., Polunovskiy V. A. Resting cells. Properties and functions of the body. Moscow: Nauka, 1983. 180.
[87] Yaroshenko MF Adaptation - guiding factor in evolution. Kishinev: Shtiintsa, 1985. 184.
[88] Grif VG, Marchs EM. Rhythms of mitotic activity and of cell cycle in plant meristems. Tsitologiia. 1994; 36(11):1069-84.
[89] Grif VG, Marchs EM. Effect lighting rhythm on the mitotic cycle in root meristem plants. Tsitologiia. 1996; 38(7):718-25.
[90] Marchs EM, Grif VG. The structure of cell cycle and rhythm of cell division in plant meristems. Tsitologiia. 1996; 38(8):842-53.
[91] Byuning E. Rhythms physiological processes. Moscow: Izd-vo «Inostr. lit-ra», 1961. 184 p.
[92] Byuning E. Entry. Biol. watch. New York: Wiley, 1964:11-26.
[93] Bullough WS, Rytomaa T. Mitotic homeostasis. Nature. 1965; 205(4971):573—578.
[94] Sweeney B. M. Rhythmic phenomena in plants. London; New-York: Acad, press, 1969. 186 p.
[95] Lloyd D, Stupfel M. The occurrence and functions of ultradian rhythms. Biol Rev Camb Philos Soc. 1991;66(3):275-99.
[96] Lebedev P. V., Utkina I. A., Mel'nikova M. F., Kirillova G YA. The daily rhythm of mitosis in the apical meristems urchins Zap. Sverdl. otd-niye Vsesoyuz. bot. o-va. 1977. 7:107—110.
[97] Balog C. The mitotic index in diploid and triploid Allium roots. Cytologia. 1982; 47(3—4):689—697.
[98] Stephens CE. Daily mitotic cycle in the common onion, Allium cepa. Cytologia. 1984; 49(4):679—684.
[99] Jeoman MM, Evans PK, Naik GG. Changes in mitotic activity during early callus development. Nature. 1966; 209(5028):1115—1116.
[100] Kunakh VA. Piven NM. Dynamics of circadian regime of mitoses in the process of formation of Haptopappus gracilis strain in culture in vitro. Tsitol Genet. 1974; 8(6):496-500.
[101] Sydorenko L. H., Piven' M. M. The daily rhythm of mitotic activity of cells in tissues and suspension cultures. Ukr. bot. zhurn. 1973; 30, 5: 651—654.
[102] Sydorenko P. H., Vyktorova N. V., Lyven Y. M. Study rytmyky cellular reproduktsyy in terms of culture in vitro. Culture cells of plants. Kiev: Naukova dumka. 1978:33-37.1978:33—37.
[103] Kostenyuk IA, Lyubarets OF, Kunakh VA. Mitotic activity and nuclear DNA content rhythms in Papaver bracterium Lind L tissue culture. Tsitol Genet. 1993; 27(6):32-9.
[104] Gupta S, Gadgil VN. Effect of light on growth and mitotic periodicity in tissue cultures. Indian J Exp Biol. 1972; 10(1):62—64.
[105] Risser PG. Somatic mitoses in cells of Picea gluca cultivated in vitro. Science. 1964;143(3606):591-2.
[106] Kallak H. Cell division and chromosome numbers in the tissue culture of Nicotiana tabacum. Biol. plant. 1968. 10(3):199—204.
[107] Hayashi T. The diurnal rhythm in the mitotic frequency in the tobacco suspension culture. Sci. Papers Coll. Gen. Educ. Univ. Tokyo. 1968; 18(1):33—39.
[108] Frolova LV, Kallak HI. The diurbal rhythm of mitotic axtivity in the plant tissue culture. Tsitologiia. 1974. 16(3):377-81.
[109] Singh B. D. Rhythmicity of mitosis in cell suspension cultures of Haplopappus gracilis (Nutt). Gray. Ind. J. Exp. Biol. 1975; 13(1):49—51.
[110] Bereznegovskaya LN, Gusev F. Smorodin AV Biological Rhythms tissue culture dope Indian and Himalayan scopolia. Rastitel'nyye resursy. 1976; 12(1):67-72.
[111] Bychkova GS, Butenko RG Synchronization of cell division in suspension culture of the ginseng (Panax ginseng SA Mey) using 5-aminouracil. The culture of plant cells. Kiev: Naukova Dumka, 1978:16-22.
[112] Viktorova N. V., Sidorenko L.G., Fomicheva V. M. Rhythm reproduction of plant cells in vitro and in vivo in microgravity. Kosmich. biologiya i biotekhnologiya. Kiev, 1986:28—32.
[113] Homma K, Johnson CH, Hastings JW. The timing of the arcadian gate of cell division in gonyaulax polyedra. Photochem. Photobiol. 1986. 43, Suppl:26.
[114] Kunakh VA. Pecularities of mototc regime and growth of Haplopappus gracilis cells in the culture in vitro. Tsitol Genet. 1973;7(6):510-3.
[115] Kunakh VA, Kaukhova IG, Alpatova LK, Vollosovich AG. Peculiarities of cell behaviour in tissue culture of Rauwolfia serpentina Benth. Tsitol Genet. 1982; 16(5):6-10.
[116] Pausheva ZP Practicum on Cytology plants. Moscow: Kolos, 1970. 256
[117] Van't Hof J, McMillan B. Cell population kinetics in callus tissues of cultured pea root segments. Am J Bot. 1969. 56(1):42—51.
[118] Grodzinsky DM, Viktorova NV. The role of heterogeneous of cell population of higher plants, cultivated in vitro, in the kinetics of its proliferation. Fiziologiia rasteniy. 1971; 18(4):823-31.
[119] Gould AR, Bayliss MW, Street HE. Studies on the growth in culture of plant cells. XVII. Analysis of the cell cycle of asynchronously dividing Acer pseudoplatanus L. cells in suspension culture. J. Exp. Bot. 1974. 25(85):468—478.
[120] Webster PL, Davidson D. Evidence from thymidine-3H-labeled meristems of Vicia faba of two cell populations. J Cell Biol. 1968;39(2):332-8.
[121] Phillips HL, Torrey JG. Duration of cell cycles in cultured roots of Convolvolus. Am J. Bot. 1972. 59(2):183—188.
[122] Rybakov VP, Romanov IuA. Analysis of the Quastler--Sherman method and several questions concerning cell kinetics. Tsitologiia. 1976;18(3):319-23.
[123] Takahashi J. S.t Menaker M. Circadian rhythmicity. Regulation in the time domain. Biol. Regulat. and Dev. Vol. 3B. New York; London, 1984:285—303.
[124] Stepanov SI biorythmological aspects of adaptation. Moscow: Nauka, 1986. 241 p.
[125] Hock B. Developmental physiology. Progr. Bot. Struct. Bot., Physiol., Genet., Taxon., Geobot. Berlin, 1989. Vol 50:133—157.
[126] Dalmer J. D. The biological rhythms and clocks of intertidal animals. Oxford: Univ. press, 1995. 232 p.
[127] Winfree A. T. The geometry of biological time. New York etc.: Springer, 1980. 530 p. (Biomathematics, Vol. 8).
[128] Floh EIS, Handro W. Variation of histological patterns in tobacco callus during successive subcultures. Can J Bot. 1985; 63(10):1794—1800.
[129] Rensing L, Goedeke K. Circadian rhythm and cell cycle: possible entraining mechanisms. Chronobiologia. 1976;3(1):853-65.
[130] Kloppstech K. Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear messenger RNAs. Planta. 1985;165(4):502-6.
[131] Schweiger HG, Hartwig R, Schweiger M. Cellular aspects of circadian rhythms. J Cell Sci Suppl. 1986;4:181-200.
[132] Kunakh V. A. Genome variability in plant somatic cells. 4. Variability in the process of dedifferentiation and callus formation in vitro. Biopolym Cell. 1998; 14(4):298-319