Biopolym. Cell. 1998; 14(4):360-370.
Intramolecular hydrogen bonds and structural nonrigidity of pyrimidine nucleosides
1Mishchuk Ya. R., 1Hovorun D. M.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Optimal structures and intramolecular web of H-bonds of cytidinc, undine, thymidine, 1heir deoxyribo-analogues and some O5'-, O3'-deutero derivatives were studied by means of MNDOl H semiempirical quantum-chemical method. Effect of the intramolecular H-bonda on the slereochemical structure of nucleosides (particularly, on the stabilization of anti conformation), on the physico-chemical characteristics of nucleoside molecules (heat of formation, dipolc moment, first adiabatic ionization potential and the charge distribution), and on the dynamical characteristics of pyrimidine nucieosides (barriers of the interconvertion, frequencies of the torsional vibrations) was elucidated. The intramolecular 11-bonds in polynudeolides and their influence on the nucleic acid architecture, and nonlinear dynamic properties arc discussed.

References

[1] Mishchuk YaR. Investigation of the physico-chemical nature of elementary acts of protein-nucleic acid and nucleic acid-nucleic acid recognition on the model systems of low molecular weight. Ph. D. Thesis. Kiev, 1993. 21 p.
[2] De Leeuw HPM, Haasnoot CAG, Altona C. Empirical correlations between conformational parameters in ?-D-furanoside fragments derived from a statistical survey of crystal structures of nucleic acid constituents full description of nucleoside molecular geometries in terms of four parameters. Isr J Chem. 1980;20(1-2):108–26.
[3] Holbrook SR, Kim SH. Local mobility of nucleic acids as determined from crystallographic data. I. RNA and B form DNA. J Mol Biol. 1984;173(3):361-88.
[4] Van Lier JJ, Smits MT, Buck HM. B-Z transition in methylated DNA. A quantum-chemical study. Eur J Biochem. 1983;132(1):55-62.
[5] Gabb A, Harvey S. Conformational transitions in potential and free energy space for furanoses and 2'-deoxynucleosides. J Am Chem Soc. 1993; 115(10): 4218-27.
[6] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[7] Emerson J, Sundaralingam M. Structure of the potassium salt of the modified nucleotide dihydrouridine 3'-monophosphate hemihydrate: correlation between the base pucker and sugar pucker and models for metal interactions with ribonucleic acid loops. Acta Cryst. 1980. 36(3): 537-543.
[8] Schweizer MP, Broom AD, Ts'o PO, Hollis DP. Studies of inter- and intramolecular interaction in mononucleotides by proton magnetic resonance. J Am Chem Soc. 1968;90(4):1042-55.
[9] Jack A, Ladner JE, Klug A. Crystallographic refinement of yeast phenylalanine transfer RNA at 2-5A resolution. J Mol Biol. 1976;108(4):619-49.
[10] Furberg S, Peterson CS, R?mming C. A refinement of the crystal structure of cytidine. Acta Cryst. 1965;18(3):313–20.
[11] Lively TN, Jurema MW, Shields GC. Hydrogen bonding of nucleotide base pairs: Application of thePM3 method. Int J Quant Chem. 1994;52(S21):95–107.
[12] Amidon GL, Anik S, Rulnn J. An energy partitioning analysis of base-sugar intramolecular C-H...O hydrogen bonding in nucleosides and nucleotides. Structure and conformation of nucleic acids and protein-nucleic acid interactions. Eds M. Sundaralingam, S. T. Rao. Baltimore: Univ. Park press, 1975: 729-44.
[13] Ts'o POP. Dinucleoside monophosphates, dinucleotides, and oligonucleotides. Basic principles in nucleic acid chemistry Ed. P. O. P. Ts'o. New York: Acad, press, 1974; Vol. 2: 305-469.
[14] June Sutor D. The C–H… O Hydrogen bond in crystals. Nature. 1962;195(4836):68–9.
[15] Bruskov VI, Bushuev VN, Poltev VI. [Nuclear magnetic resonance study of C--H...O type hydrogen bonds in analogs of nucleic acid base]. Mol Biol (Mosk). 1980;14(2):316-22.
[16] Govorun DM, Kondratyuk IV, Zheltovsky NV. Nucleotide bases as CH-Acids. Biopolym Cell. 1995; 11(5):15-20.
[17] Hovorun DM, Mishchuk YaR, Kondratyuk IV. On a quantum-chemical nature of a stereochemical nonrigidity of canonical nucleotide bases. Biopolym Cell. 1996; 12(5):5-12.
[18] Govorun DM, Mishchuk YaR, Kondratyuk IV, Zlieltovsky MV. Intramolecular cooperative hydrogen bonds in nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1996;(8):141-4.
[19] Govorun DN, Danchuk VD, Mishchuk YR, Kondratyuk IV, Radomsky NF, Zheltovsky NV. AM1 calculation of the nucleic acid bases structure and vibrational spectra. J Mol Struct. 1992;267:99–103.
[20] Bureiko SF, Oktiabr'skii VL. [Investigation of the kinetics of proton transfer reactions in solution by stopped-flow]. Kinetika i Kataliz. 1986; 27(3):565-9.
[21] Bureiko SF, Golubev NS, Pihlaja K, Mattinen J. Formation of bifurcate hydrogen bonds in complexes of di-ortho-substituted phenols in solution. J Struct Chem. 1991;32(1):70–4.
[22] Govorun DM, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Zheltovsky MV. About nonplanarity and dipole nonstability of canonical nucleotide bases methylated at the glycoside nitrogen. Dopovidi Nats Akad Nauk Ukrainy. 1995; (6):117-9.
[23] Komasa J, Szalewicz K, Leszczy?ski J. Does the methyl group form a hydrogen bond? Ab initio post-Hartree–Fock study on ethane–hydrogen cyanide complex. Chem Phys Lett.1998;285(5-6):449–54.
[24] Kuchler E, Derkosch J. Infrarot-spektroskopische Untersuchung der Assoziation von Nucleosid-Derivaten in L?sung: Nachweis der Bildung durch Wasserstoffbr?cken gebundener Basenpaare. Z Naturforschung. 1966; 21b(3):209-16.
[25] Young PR, Kallenbach NR. Secondary structure in polyuridylic acid. Non-classical hydrogen bonding and the function of the ribose 2'-hydroxyl group. J Mol Biol. 1978;126(3):467-79.
[26] Follmann H, Pfeil R, Witzel H. Pyrimidine nucleosides in solution. A study of intramolecular forces by proton magnetic resonance spectroscopy. Eur J Biochem. 1977;77(3):451-61.
[27] Jeffrey GA, Maluszynska H, Mitra J. Hydrogen bonding in nucleosides and nucleotides. Int J Biol Macromol. 1985;7(6):336–48.
[28] Jeffrey GA, Saenger W. Hydrogen bonding in biological systems. Berlin: Springer, 1994. 569 p.
[29] Samijlenko SP, Alexeeva IV, Palchykivs'ka LH, Kondratyuk IV, Stepanyugin AV, Shalamay AS, Hovorun DM. Structural features of 6-azacytidine and its derivatives: data of NMR and IR spectroscopies. Biopolym Cell. 1997; 13(6):445-52.
[30] Sponer J, Hobza P, Leszczinski J. Interactions of DNA bases and the structure of DNA. A nonempirical ab initio study with inclusion of electron correlation. Computational Chemistry. Review of current trends. Ed. J. Leszczynski. Singapore; London: World Sci., 1996. Vol. 1: 271 p.
[31] Hovorun DM, Mishchuk YaR, Kondratyuk IV. Topological features of potential energy hypersurface of canonical nucleotide bases. Biopolym Cell. 1996; 12(5):13-7.
[32] Sponer J, Leszczynski J, Hobza P. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies. J Biomol Struct Dyn. 1996;14(1):117-35.
[33] Levitt M, Warshel A. Extreme conformational flexibility of the furanose ring in DNA and RNA. J Am Chem Soc. 1978;100(9):2607–13.
[34] Hovorun DM. On the microstructural origin of the linear DNA curvature. Dopovidi Nats Akad Nauk Ukrainy. 1998; (5):189-95.
[35] Bolton PH, Kearns DR. Hydrogen bonding of the 2' OH in RNA. Biochim Biophys Acta. 1978;517(2):329-37.
[36] Rabczenko A, Shugar D. Hydrogen bonding scheme involving ribose 2'-hydroxyls in polyribouridylic acid. Acta Biochim Pol. 1972;19(1):89-91.