Biopolym. Cell. 1998; 14(4):320-331.
Investigation of the Penicillium vitale catalase primar structure. 5. Reconstruction of the polypsptide chain and comparison it with other catalases
1Kozlov E. A., 1Levitina T. L., 1Bobrovskaya M. T., 2Gudkova L. V., 1Radomskij N. F.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Palladin Institute of Biochemistry, NAS of Ukraine
    9, Leontovycha Str., Kyiv, Ukraine, 01601

Abstract

Three fragments of P. vitale catalase were reconstructed on the base of T6, T12, T29, T30, T32, T44, Trn2, Tm11, Tm28, Tm29, Tm35, Tm36, Tm39. Spl, Sp2, Sp5, Sp11, Sp14, Sp26, Sp27, BrCN3–BrCN10 peptides. The peptides structure was published earlier. The uninterrupted polyoeptide chain of P. vitale catalase WCK structured from these fragments by means of their comparison with the amino acid sequences of 26 other catalases. This reconstructed polypeptide chain comprises 696 amino acid residues. The primary structure of 26 catalases from 23 origins of 6 taxonomic groups is comparing. The degree of relatedness matrix of catalases primary structure was constructed.

References

[1] Gusak NM, Levitina TL, Bobrovskaya MT, Gudkova LV, Kozlov EA. Investigation of the primary structure of Penicillium vitale catalase. 1. Tryptic peptides of nonmodified catalase. Biopolym Cell. 1998; 14(1):62-7.
[2] Levitina TL, Gusak NM, Miroshnichenko OS, Sobrovskaya MT, Gudkova LV, Latyshko NV, Kozlov EA. Investigation of the primary structure of Penicillium vitale catalase. 2. Tryptic peptides of maleilated catalase. Biopolym Cell. 1998; 14(2):105-110.
[3] Levitina TL, Latyshko NV, Bobrovskaya MT, Gudkova LV, Kozlov EA. Investigation of the primary structure of Penicillium vitale catalase. 3. Peptides obtained by cleavage of the catalase by Staphylococcus aureus V8 proteinase. Biopolym Cell. 1998; 14(3):191-5.
[4] Bobrovskaya MT, Rodnin NV, Levitina TL, Latyshko NV, Gudkova LV, Kozlov EA. Investigation of the primary structure of Penicillium vitale catalase. 4. Cyanogen bromide fragments. Biopolym Cell. 1998; 14(3):196-202.
[5] Gudkova LV, Kirilenko MT, Levitina TL, Kozlov EA. Study of the subunit structure of catalase from Penicillium vitale. Ukr Biokhim Zh. 1985;57(4):29-33.
[6] Vainshtein BK, Melik-Adamyan WR, Barynin VV, Vagin AA, Grebenko AI, Borisov VV, Bartels KS, Fita I, Rossmann MG. Three-dimensional structure of catalase from Penicillium vitale at 2.0 A resolution. J Mol Biol. 1986;188(1):49-61.
[7] von Ossowski I, Hausner G, Loewen PC. Molecular evolutionary analysis based on the amino acid sequence of catalase. J Mol Evol. 1993;37(1):71-6.
[8] Bethards LA, Skadsen RW, Scandalios JG. Isolation and characterization of a cDNA clone for the Cat2 gene in maize and its homology with other catalases. Proc Natl Acad Sci U S A. 1987;84(19):6830-4.
[9] Redinbaugh MG, Wadsworth GJ, Scandalios JG. Characterization of catalase transcripts and their differential expression in maize. Biochim Biophys Acta. 1988;951(1):104-16.
[10] Bishai WR, Smith HO, Barcak GJ. A peroxide/ascorbate-inducible catalase from Haemophilus influenzae is homologous to the Escherichia coli katE gene product. J Bacteriol. 1994;176(10):2914-21.
[11] Milano A, De Rossi E, Gusberti L, Heym B, Marone P, Riccardi G. The katE gene, which encodes the catalase HPII of Mycobacterium avium. Mol Microbiol. 1996;19(1):113-23.
[12] Schroeder WA, Shelton JR, Shelton JB, Robberson B, Apell G, Fang RS, Bonaventura J. The complete amino acid sequence of bovine liver catalase and the partial sequence of bovine erythrocyte catalase. Arch Biochem Biophys. 1982;214(1):397-421.
[13] Haber JE, Koshland DE Jr. An evaluation of the relatedness of proteins based on comparison of amino acid sequences. J Mol Biol. 1970;50(3):617-39.
[14] Fita I, Rossmann MG. The active center of catalase. J Mol Biol. 1985;185(1):21-37.