Biopolym. Cell. 1998; 14(3):177-183.
Reviews
Channeling in protein synthesis
1Negrutskii B. S.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Own and literature data concerning channeling of tRNA in eukaryotic protein synthesis are reviewed. The hypothesis about the role of GDP and GTP-bound forms of Ef-1a in the transfer of tRNA along protein synthetic chain is proposed.

References

[1] Ottaway JH. Compartmentation: model and reality. Biochem Soc Trans. 1983;11(1):47-52.
[2] Ottaway JR. Comments on metabolic compartmentation and soluble metabolic pathways. BioEssays. 1984; 1(6):283-4.
[3] Srere PA. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89-124. Review.
[4] Fell D. Understanding the control of metabolism. Ed. K. Snell. London-Miami: Portland press, 1997.
[5] Spivey HO, Merz JM. Metabolic compartmentation. Bioessays. 1989;10(4):127-30.
[6] Spirin AS. Energetics and Dynamics of the protein synthesizing system. Usp Biol Khim. 1989; 30: 3-24.
[7] Deutscher MP. The eucaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J Cell Biol. 1984;99(2):373-7.
[8] Ryazanov AG, Ovchinnikov LP, Spirin AS. Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes. Biosystems. 1987;20(3):275-88.
[9] Negrutskii BS. Transfer RNA as a factor of the protein homeostasis regulation. Biopolym Cell. 1989; 5(5):5-18.
[10] Negrutskii BS, Deutscher MP. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci U S A. 1991;88(11):4991-5.
[11] Negrutskii BS, Stapulionis R, Deutscher MP. Supramolecular organization of the mammalian translation system. Proc Natl Acad Sci U S A. 1994;91(3):964-8.
[12] Negrutskii BS, Deutscher MP. A sequestered pool of aminoacyl-tRNA in mammalian cells. Proc Natl Acad Sci U S A. 1992;89(8):3601-4.
[13] Robertson JM, Wintermeyer W. Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocation. J Mol Biol. 1987;196(3):525-40.
[14] Graf H. Intraction of aminoacyl-tRNA synthetases with ribosomes and ribosomal subunits. Biochim Biophys Acta. 1976;425(2):175-84.
[15] Sana Sara, Mozuraitis RJ, Kharchenko OV, Ivanov LL, Turkovskaya GV, Martinkus ZP, Kovalenko MI, El'skaya AV. Interaction of eukaryotic aminoacyl-tRNA synthetases with ribosomes. Biopolym Cell. 1992; 8(1):101-7.
[16] Kudlicki W, Coffman A, Kramer G, Hardesty B. Ribosomes and ribosomal RNA as chaperones for folding of proteins. Fold Des. 1997;2(2):101-8.
[17] Stapulionis R, Deutscher MP. A channeled tRNA cycle during mammalian protein synthesis. Proc Natl Acad Sci U S A. 1995;92(16):7158-61.
[18] Petrushenko ZM, Negrutskii BS, Ladokhin AS, Budkevich TV, Shalak VF, El'skaya AV. Evidence for the formation of an unusual ternary complex of rabbit liver EF-1alpha with GDP and deacylated tRNA. FEBS Lett. 1997;407(1):13-7.
[19] Negrutskii BS, Budkevich TV, Shalak VF, Turkovskaya GV, El'Skaya AV. Rabbit translation elongation factor 1 alpha stimulates the activity of homologous aminoacyl-tRNA synthetase. FEBS Lett. 1996;382(1-2):18-20.
[20] Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995;270(5241):1464-72.
[21] Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O, Khodyreva S, Safro M. The crystal structure of phenylalanyl-tRNA synthetase from thermus thermophilus complexed with cognate tRNAPhe. Structure. 1997;5(1):59-68.
[22] Reed VS, Wastney ME, Yang DC. Mechanisms of the transfer of aminoacyl-tRNA from aminoacyl-tRNA synthetase to the elongation factor 1 alpha. J Biol Chem. 1994;269(52):32932-6.
[23] Kudlicki W, Coffman A, Kramer G, Hardesty B. Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem. 1997;272(51):32206-10.
[24] Bec G, Kerjan P, Zha XD, Waller JP. Valyl-tRNA synthetase from rabbit liver. I. Purification as a heterotypic complex in association with elongation factor 1. J Biol Chem. 1989;264(35):21131-7.
[25] Bec G, Kerjan P, Waller JP. Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. J Biol Chem. 1994;269(3):2086-92.
[26] Quevillon S, Mirande M. The p18 component of the multisynthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1. FEBS Lett. 1996;395(1):63-7.
[27] Varricchio F, Uziel M. Comparison of supernatant-and ribosome-bound rat liver tRNA. Biochem Int. 1992;28(6):1039-44.
[28] Mukhopadhyay S, Shankar S, Walden W, Chakrabarty AM. Complex formation of the elongation factor Tu from Pseudomonas aeruginosa with nucleoside diphosphate kinase modulates ribosomal GTP synthesis and peptide chain elongation. J Biol Chem. 1997;272(28):17815-20.
[29] Sonnemann J, Mutzel R. Cytosolic nucleoside diphosphate kinase associated with the translation apparatus may provide GTP for protein synthesis. Biochem Biophys Res Commun. 1995;209(2):490-6.
[30] Hod Y, Hershko A. Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J Biol Chem. 1976;251(14):4458-7.
[31] Gehrke L, Ilan J. Preferential utilization of exogenously supplied leucine for protein synthesis in estradiol-induced and uninduced cockerel liver explants. Proc Natl Acad Sci U S A. 1983;80(11):3274-8.
[32] Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990;347(6292):494-6.
[33] Murray JW, Edmonds BT, Liu G, Condeelis J. Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends. J Cell Biol. 1996;135(5):1309-21.
[34] Liu G, Tang J, Edmonds BT, Murray J, Levin S, Condeelis J. F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J Cell Biol. 1996;135(4):953-63.
[35] Edmonds BT, Wyckoff J, Yeung YG, Wang Y, Stanley ER, Jones J, Segall J, Condeelis J. Elongation factor-1 alpha is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma. J Cell Sci. 1996;109 ( Pt 11):2705-14.
[36] Stapulionis R, Kolli S, Deutscher MP. Efficient mammalian protein synthesis requires an intact F-actin system. J Biol Chem. 1997;272(40):24980-6.
[37] Barbarese E, Koppel DE, Deutscher MP, Smith CL, Ainger K, Morgan F, Carson JH. Protein translation components are colocalized in granules in oligodendrocytes. J Cell Sci. 1995;108 ( Pt 8):2781-90.
[38] Ainger K, Avossa D, Diana AS, Barry C, Barbarese E, Carson JH. Transport and localization elements in myelin basic protein mRNA. J Cell Biol. 1997;138(5):1077-87.
[39] Tiedge H, Brosius J. Translational machinery in dendrites of hippocampal neurons in culture. J Neurosci. 1996;16(22):7171-81.
[40] Negrutskii BS. The effect of phosphocreatine on the distribution of different subunits of translation elongation factor 1 in gently permeabilized human fibroblasts. Biopolym Cell. 1997; 13(5):380-5.