Biopolym. Cell. 1988; 4(4):193-196.
Structure and Function of Biopolymers
Study of Poly(U) and poly(dT)-dependent Phe-tRNAPhe binding to 30S subunits of Escherichia coli ribosomes
1Soldatkin K. A., 1Potapov A. P., 1Soldatkin A. P., 1El'skaya A. V.
  1. Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR

Abstract

To study the role of the codon sugar-phosphate backbones in the mRNA decoding process we have compared the messenger activity of authentic ribo- and deoxyribopolynucle-otides, poly(U) and poly(dT), in the factor-free binding of Phe-tRNAPhe to the SOS subunits of E. coli ribosomes. The template efficiency of poly(U) is much higher than that of poly(dT). Template 2'-hydroxyl groups seem to be important for the binding process at the A site of SOS subunit. The results obtained indicate the co-operative nature of the occupation of the P and A sites of SOS subunits. Neomycin exerted an insignificant effect upon the Phe-tRNAPhe binding. High sensitivity of translation efficiency to neomycin may be due to the translocation stage.

References

[1] Potapov AP. A stereospecific mechanism for the aminoacyl-tRNA selection at the ribosome. FEBS Lett. 1982;146(1):5-8.
[2] Potapov AP. Mechanism of the stereospecific stabilization of codon-anticodon complexes in ribosomes during translation. Zh Obshch Biol. 1985;46(1):63-77.
[3] Potapov AP, Soldatkin KA, Soldatkin AP, El'skaya AV. Comparative study of poly(U) and poly(dT) template activity in cell-free protein synthesizing systems from Escherichia coli and wheat germ. Biopolym. Cell. 1988; 4(3):133-8.
[4] Morgan AR, Wells RD, Khorana HG. Studies on polynucleotides. LXXIV. Direct translation in vitro of single-stranded DNA-like polymers with repeating nucleotide sequences in the presence of neomycin B. J Mol Biol. 1967;26(3):477-97.
[5] Salas J, Bollum FJ. Biosynthesis polydeoxynucleotides as direct templates for polypeptide synthesis. J Biol Chem. 1968;243(5):1012-5.
[6] McCarthy BJ, Holland JJ. Denatured DNA as a direct template for in vitro protein synthesis. Proc Natl Acad Sci U S A. 1965;54(3):880-6.
[7] Cabanas MJ, Vazquez D, Modolell J. Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem Biophys Res Commun. 1978;83(3):991-7.
[8] Price AR, Rottman F. 2'-O-methyloligoadenylates as templates for the binding of lysyl transfer ribonucleic acid to ribosomes. Biochemistry. 1970;9(23):4524-9.
[9] Nirenberg M, Leder P. RNA codewords and protein synthesis. The effect of trinucleotides upon the binding of sRNA to ribosomes. Science. 1964;145(3639):1399-407.
[10] Zubay C. The isolation and fractionation of soluble ribonucleic acid. J Mol Biol. 1962; 4(3):347-356.
[11] Keller EB, Zamecnik PC. The effect of guanosine diphosphate and triphosphate on the incorporation of labeled amino acids into proteins. J Biol Chem. 1956;221(1):45-59.
[12] Gillam IC, Tener GM. The use of BD-cellulose in separating transfer RNA's. Methods Enzymol. 1971; 20:55-70.
[13] Kirillov SV. Codon-anticodon mechanism of interaction on ribosomes. Itogi nauki I tekhniki. Eds AA Krayevskogo, VL Kretovicha. Moscow, VINITI, 1983; 5-98 (Ser. Biol Chem., Vol. 18).
[14] Kirillov SV, Kemkhadze KS, Makarov EM, Makhno VI, Odintsov VB, Semenkov YP. Mechanism of codon-anticodon interaction in ribosomes: codon-anticodon interaction of aminoacyl-tRNA at the ribosomal donor site. FEBS Lett. 1980;120(2):221-4.